Source Code
Overview
S Balance
More Info
ContractCreator
Loading...
Loading
Contract Name:
BondingCurve
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; /** * @title BondingCurve * @dev Implementation of Bancor Formula bonding curve for token pricing and liquidity */ contract BondingCurve is Ownable, ReentrancyGuard { using SafeERC20 for IERC20; // State variables IERC20 public token; // Token being traded uint256 public constant PRECISION = 1e18; // Standard precision uint256 public constant MAX_RESERVE_RATIO = 1000000; // 100% in ppm uint256 public constant FUNDING_GOAL = 10 ether; // 400,000 ETH funding goal uint256 public constant INITIAL_PRICE = 0.00000001 ether; // 0.00000001 ETH per token uint256 public constant INITIAL_SUPPLY = 1_000_000_000 * 1e18; // 1 billion tokens uint256 public constant INITIAL_RESERVE = 10000 ether; // 10,000 ETH uint256 public reserveWeight; // Reserve weight in ppm (1-1000000) uint256 public initialSupply; // Initial token supply (S₀) uint256 public totalSupply; // Current supply in the bonding curve uint256 public fundingRaised; // Total funding raised in ETH uint256 public reserveBalance; // Current ETH reserve balance bool public fundingGoalReached; // Flag to track if funding goal is reached uint256 public fundingEndTime; // Timestamp when funding goal was reached uint256 public constant KMAX = 1e10; // Giảm lại để tránh tràn số uint256 public constant FEE = 1e16; // 1% fee // Events event Buy(address indexed buyer, uint256 tokenAmount, uint256 paymentAmount); event Sell(address indexed seller, uint256 tokenAmount, uint256 paymentAmount); event FundingRaised(uint256 amount); event FundingGoalReached(uint256 timestamp); event UpdateInfo(uint256 newPrice, uint256 newSupply, uint256 newTotalMarketCap, uint256 newFundingRaised, uint256 amountTokenToReceive); event PoolBalanceUpdated(uint256 newBalance); constructor( address _token, uint256 _reserveWeight, uint256 _initialSupply ) Ownable(msg.sender) { require(_token != address(0), "Invalid token address"); require(_reserveWeight > 0 && _reserveWeight <= MAX_RESERVE_RATIO, "Invalid reserve weight"); require(_initialSupply > 0, "Initial supply must be positive"); token = IERC20(_token); reserveWeight = _reserveWeight; initialSupply = _initialSupply; totalSupply = 0; fundingRaised = 0; reserveBalance = INITIAL_RESERVE; } /** * @dev Power function for calculating token price * @param base Base number * @param exp Exponent in PRECISION * @return result Result of base^exp */ function pow(uint256 base, uint256 exp) internal pure returns (uint256) { require(base > 0, "Base must be positive"); if (base == PRECISION) { return PRECISION; } if (exp == 0) { return PRECISION; } if (exp == PRECISION) { return base; } // Use logarithmic properties for the calculation uint256 logBase = _ln(base); uint256 logResult = (logBase * exp) / PRECISION; return _exp(logResult); } /** * @dev Natural logarithm function * @param x Value to calculate ln(x) * @return Natural logarithm result */ function _ln(uint256 x) internal pure returns (uint256) { require(x > 0, "Cannot calculate ln of 0"); uint256 result = 0; uint256 y = x; while (y < PRECISION) { y = (y * 10) / 1; result -= PRECISION / 10; } y = y / 10; for (uint8 i = 0; i < 10; i++) { y = (y * y) / PRECISION; if (y >= 10 * PRECISION) { result += PRECISION; y = y / 10; } } return result; } /** * @dev Exponential function * @param x Value to calculate e^x * @return Exponential result */ function _exp(uint256 x) internal pure returns (uint256) { require(x <= 2 ** 255 - 1, "Overflow"); uint256 result = PRECISION; uint256 xi = x; uint256 term = PRECISION; for (uint8 i = 1; i <= 8; i++) { term = (term * xi) / (i * PRECISION); result += term; } return result; } /** * @dev Get current token price using Bancor Formula * P = R₀ * (S/S₀)^((1-F)/F) * @return Current price in wei */ function getCurrentPrice() public view returns (uint256) { if (totalSupply == 0) return INITIAL_PRICE; return _calculatePrice(reserveBalance); } /** * @dev Get total market capitalization in ETH * @return Total market cap in wei */ function getTotalMarketCap() public view returns (uint256) { if (totalSupply == 0) return 0; return getCurrentPrice() * totalSupply / PRECISION; } /** * @dev Get total funding raised * @return Total funding in wei */ function getTotalFundingRaised() public view returns (uint256) { return fundingRaised; } /** * @dev Calculate tokens to receive for ETH amount * @param ethAmount Amount of ETH in wei * @return tokenAmount Number of tokens that can be bought */ function calculateTokensForEth(uint256 ethAmount) public view returns (uint256) { require(ethAmount > 0, "ETH amount must be positive"); // Với lần mua đầu tiên if (totalSupply == 0) { return (ethAmount * PRECISION) / INITIAL_PRICE; } // Tính giá trước khi mua uint256 priceBeforeBuy = getCurrentPrice(); // Tính giá sau khi mua uint256 newReserveBalance = reserveBalance + ethAmount; uint256 priceAfterBuy = _calculatePrice(newReserveBalance); // Tính số token dựa trên giá trung bình uint256 avgPrice = (priceBeforeBuy + priceAfterBuy) / 2; uint256 tokensEstimate = (ethAmount * PRECISION) / avgPrice; // Giới hạn số lượng uint256 availableSupply = initialSupply - totalSupply; if (tokensEstimate > availableSupply) { tokensEstimate = availableSupply; } require(tokensEstimate > 0, "Token calculation resulted in zero"); return tokensEstimate; } /** * @dev Calculate ETH to receive for token amount * @param tokenAmount Amount of tokens * @return ethAmount Amount of ETH in wei */ function calculateEthForTokens(uint256 tokenAmount) public view returns (uint256) { require(tokenAmount > 0, "Token amount must be positive"); require(tokenAmount <= totalSupply, "Insufficient supply"); // Bán toàn bộ token if (totalSupply == tokenAmount) { return reserveBalance; } // Tính giá trước khi bán uint256 priceBeforeSell = getCurrentPrice(); // Ước tính ethAmount sẽ rút ra uint256 estimatedEth = (tokenAmount * priceBeforeSell) / PRECISION; uint256 newReserveBalance = reserveBalance > estimatedEth ? reserveBalance - estimatedEth : 0; // Tính giá sau khi bán uint256 priceAfterSell = _calculatePrice(newReserveBalance); // Tính ETH dựa trên giá trung bình uint256 avgPrice = (priceBeforeSell + priceAfterSell) / 2; uint256 ethEstimate = (tokenAmount * avgPrice) / PRECISION; // Áp dụng fee uint256 fee = (ethEstimate * FEE) / PRECISION; ethEstimate = ethEstimate - fee; // Kiểm tra require(ethEstimate <= reserveBalance, "Insufficient reserve"); require(ethEstimate > 0, "ETH calculation resulted in zero"); return ethEstimate; } /** * @dev Buy tokens using ETH * @param minTokens Minimum amount of tokens to receive * @param buyer Address of the token buyer */ function buy(uint256 minTokens, address buyer) external payable nonReentrant { // Check funding goal status first require(!fundingGoalReached, "Funding goal already reached"); require(fundingRaised < FUNDING_GOAL, "Funding goal exceeded"); require(msg.value > 0, "Must send ETH"); require(buyer != address(0), "Invalid buyer address"); // Calculate tokens to receive uint256 tokensToReceive = calculateTokensForEth(msg.value); require(tokensToReceive > 0, "No tokens to receive"); require(tokensToReceive >= minTokens, "Slippage too high"); // Check contract balance and allowance uint256 contractBalance = token.balanceOf(address(this)); require(contractBalance >= tokensToReceive, "Insufficient token balance"); // Check if this purchase would exceed funding goal require(fundingRaised + msg.value <= FUNDING_GOAL, "Purchase would exceed funding goal"); // Update state before transfer totalSupply += tokensToReceive; fundingRaised += msg.value; reserveBalance += msg.value; // Emit pool balance update emit PoolBalanceUpdated(reserveBalance); // Transfer tokens to buyer token.safeTransfer(buyer, tokensToReceive); // Emit price update after state changes emit UpdateInfo(getCurrentPrice(), totalSupply, getTotalMarketCap(), fundingRaised, tokensToReceive); // Check if funding goal is reached if (fundingRaised >= FUNDING_GOAL && !fundingGoalReached) { fundingGoalReached = true; fundingEndTime = block.timestamp; emit FundingGoalReached(block.timestamp); } emit Buy(buyer, tokensToReceive, msg.value); emit FundingRaised(msg.value); } /** * @dev Sell tokens back to the contract * @param tokenAmount Amount of tokens to sell * @param minEth Minimum ETH to receive */ function sell(uint256 tokenAmount, uint256 minEth) external nonReentrant { require(tokenAmount > 0, "Amount must be positive"); require(totalSupply >= tokenAmount, "Cannot sell more than supply"); uint256 ethToReceive = calculateEthForTokens(tokenAmount); require(ethToReceive >= minEth, "Below min return"); require(address(this).balance >= ethToReceive, "Insufficient contract balance"); // Transfer tokens from seller token.safeTransferFrom(msg.sender, address(this), tokenAmount); // Update state totalSupply -= tokenAmount; reserveBalance -= ethToReceive; // Emit pool balance update emit PoolBalanceUpdated(reserveBalance); // Transfer ETH to seller using call (bool success, ) = msg.sender.call{value: ethToReceive}(""); require(success, "ETH transfer failed"); // Emit events emit UpdateInfo(getCurrentPrice(), totalSupply, getTotalMarketCap(), fundingRaised, tokenAmount); emit Sell(msg.sender, tokenAmount, ethToReceive); } /** * @dev Get holder's token percentage compared to initial supply * @param holder Address of the holder * @return percentage Percentage with 2 decimals (e.g., 534 = 5.34%) */ function getHolderTokenPercentage(address holder) external view returns (uint256) { require(holder != address(0), "Invalid address"); uint256 holderBalance = token.balanceOf(holder); if (holderBalance == 0) return 0; // Return percentage with 2 decimals return (holderBalance * 10000) / initialSupply; } /** * @dev Get top holder percentages * @param holders Array of holder addresses to check * @return percentages Array of percentages with 2 decimals */ function getMultipleHolderPercentages(address[] calldata holders) external view returns (uint256[] memory) { uint256[] memory percentages = new uint256[](holders.length); for(uint256 i = 0; i < holders.length; i++) { if(holders[i] == address(0)) { percentages[i] = 0; continue; } uint256 holderBalance = token.balanceOf(holders[i]); percentages[i] = holderBalance > 0 ? (holderBalance * 10000) / initialSupply : 0; } return percentages; } /** * @dev Get funding progress percentage * @return progress Percentage with 2 decimals (e.g., 8350 = 83.50%) */ function getFundingProgress() external view returns (uint256) { if (fundingRaised == 0) return 0; return (fundingRaised * 10000) / FUNDING_GOAL; } /** * @dev Get remaining funding amount needed * @return remaining Amount in ETH needed to reach goal */ function getRemainingFunding() external view returns (uint256) { if (fundingGoalReached || fundingRaised >= FUNDING_GOAL) { return 0; } return FUNDING_GOAL - fundingRaised; } /** * @dev Get funding duration if goal reached * @return duration Time in seconds from contract creation to goal reached */ function getFundingDuration() external view returns (uint256) { if (!fundingGoalReached) { return 0; } return fundingEndTime; } /** * @dev Check if funding is active * @return bool True if funding is still active */ function isFundingActive() public view returns (bool) { return !fundingGoalReached && fundingRaised < FUNDING_GOAL; } /** * @dev Get current ETH balance in the pool * @return Amount of ETH in wei */ function getPoolBalance() public view returns (uint256) { return address(this).balance; // Return actual ETH balance of contract } // Add function to check both balances function checkBalances() public view returns (uint256 actualBalance, uint256 reserveBalance_) { return (address(this).balance, reserveBalance); } // Function to receive ETH receive() external payable {} // Thêm hàm helper để tính toán giá function _calculatePrice(uint256 reserveAmount) internal pure returns (uint256) { if (reserveAmount <= INITIAL_RESERVE) { uint256 ratio = (reserveAmount * PRECISION) / INITIAL_RESERVE; return (INITIAL_PRICE * (PRECISION + ratio * 6)) / PRECISION; } else { uint256 basePrice = INITIAL_PRICE * 3; uint256 excessReserve = reserveAmount - INITIAL_RESERVE; uint256 excessRatio = (excessReserve * PRECISION) / INITIAL_RESERVE; uint256 sqrtRatio = Math.sqrt((excessRatio * PRECISION) / 5) + PRECISION; return (basePrice * sqrtRatio) / PRECISION; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
{ "optimizer": { "enabled": true, "runs": 200 }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveWeight","type":"uint256"},{"internalType":"uint256","name":"_initialSupply","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"paymentAmount","type":"uint256"}],"name":"Buy","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"FundingGoalReached","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"FundingRaised","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newBalance","type":"uint256"}],"name":"PoolBalanceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"paymentAmount","type":"uint256"}],"name":"Sell","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newSupply","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newTotalMarketCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newFundingRaised","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountTokenToReceive","type":"uint256"}],"name":"UpdateInfo","type":"event"},{"inputs":[],"name":"FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FUNDING_GOAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INITIAL_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INITIAL_RESERVE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INITIAL_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"KMAX","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_RESERVE_RATIO","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"minTokens","type":"uint256"},{"internalType":"address","name":"buyer","type":"address"}],"name":"buy","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"calculateEthForTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"ethAmount","type":"uint256"}],"name":"calculateTokensForEth","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"checkBalances","outputs":[{"internalType":"uint256","name":"actualBalance","type":"uint256"},{"internalType":"uint256","name":"reserveBalance_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fundingEndTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fundingGoalReached","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fundingRaised","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getFundingDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getFundingProgress","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"}],"name":"getHolderTokenPercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"holders","type":"address[]"}],"name":"getMultipleHolderPercentages","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRemainingFunding","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalFundingRaised","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalMarketCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isFundingActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserveBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserveWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenAmount","type":"uint256"},{"internalType":"uint256","name":"minEth","type":"uint256"}],"name":"sell","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60806040523480156200001157600080fd5b5060405162001e2b38038062001e2b83398101604081905262000034916200020d565b33806200005c57604051631e4fbdf760e01b8152600060048201526024015b60405180910390fd5b6200006781620001bd565b50600180556001600160a01b038316620000c45760405162461bcd60e51b815260206004820152601560248201527f496e76616c696420746f6b656e20616464726573730000000000000000000000604482015260640162000053565b600082118015620000d85750620f42408211155b620001265760405162461bcd60e51b815260206004820152601660248201527f496e76616c696420726573657276652077656967687400000000000000000000604482015260640162000053565b60008111620001785760405162461bcd60e51b815260206004820152601f60248201527f496e697469616c20737570706c79206d75737420626520706f73697469766500604482015260640162000053565b600280546001600160a01b0319166001600160a01b0394909416939093179092556003556004556000600581905560065569021e19e0c9bab240000060075562000252565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000806000606084860312156200022357600080fd5b83516001600160a01b03811681146200023b57600080fd5b602085015160409095015190969495509392505050565b611bc980620002626000396000f3fe6080604052600436106101fd5760003560e01c80637deb60251161010d578063cc432410116100a0578063e7d4c75e1161006f578063e7d4c75e1461051d578063eb04c36c1461053b578063eb91d37e14610551578063f2fde38b14610566578063fc0c546a1461058657600080fd5b8063cc432410146104ae578063cf1d224b146104ce578063d424f628146104e3578063d79875eb146104fd57600080fd5b8063a10954fe116100dc578063a10954fe1461044e578063aaf5eb6814610464578063abd70aa214610480578063c57981b51461049357600080fd5b80637deb6025146103c85780638da5cb5b146103db5780639245b5701461040d5780639e241e851461042257600080fd5b80632ff2e9dc11610190578063636d6c9d1161015f578063636d6c9d1461034957806365a60c091461036e578063715018a61461039b57806374eedd46146103b25780637c5e2795146102c957600080fd5b80632ff2e9dc146102e2578063378dc3dc1461030257806342e49d5a1461031857806346de2a811461033457600080fd5b80631c9605d2116101cc5780631c9605d21461027f57806320b17a0a146102945780632167c0e3146102b457806327d5b1fd146102c957600080fd5b806306fd9bf614610209578063104b02571461023c5780631190016c1461025257806318160ddd1461026957600080fd5b3661020457005b600080fd5b34801561021557600080fd5b50610229610224366004611958565b6105a6565b6040519081526020015b60405180910390f35b34801561024857600080fd5b5061022960035481565b34801561025e57600080fd5b50610229620f424081565b34801561027557600080fd5b5061022960055481565b34801561028b57600080fd5b5061022961071a565b3480156102a057600080fd5b506102296102af366004611958565b610734565b3480156102c057600080fd5b5061022961094e565b3480156102d557600080fd5b506102296402540be40081565b3480156102ee57600080fd5b506102296b033b2e3c9fd0803ce800000081565b34801561030e57600080fd5b5061022960045481565b34801561032457600080fd5b50610229678ac7230489e8000081565b34801561034057600080fd5b50610229610991565b34801561035557600080fd5b5061035e6109cb565b6040519015158152602001610233565b34801561037a57600080fd5b5061038e610389366004611971565b6109ee565b60405161023391906119e6565b3480156103a757600080fd5b506103b0610ba5565b005b3480156103be57600080fd5b5061022960095481565b6103b06103d6366004611a41565b610bb9565b3480156103e757600080fd5b506000546001600160a01b03165b6040516001600160a01b039091168152602001610233565b34801561041957600080fd5b50600654610229565b34801561042e57600080fd5b506104396007544791565b60408051928352602083019190915201610233565b34801561045a57600080fd5b5061022960075481565b34801561047057600080fd5b50610229670de0b6b3a764000081565b34801561048c57600080fd5b5047610229565b34801561049f57600080fd5b50610229662386f26fc1000081565b3480156104ba57600080fd5b506102296104c9366004611a6d565b6110a6565b3480156104da57600080fd5b50610229611192565b3480156104ef57600080fd5b5060085461035e9060ff1681565b34801561050957600080fd5b506103b0610518366004611a88565b6111bd565b34801561052957600080fd5b5061022969021e19e0c9bab240000081565b34801561054757600080fd5b5061022960065481565b34801561055d57600080fd5b506102296114ba565b34801561057257600080fd5b506103b0610581366004611a6d565b6114db565b34801561059257600080fd5b506002546103f5906001600160a01b031681565b60008082116105fc5760405162461bcd60e51b815260206004820152601b60248201527f45544820616d6f756e74206d75737420626520706f736974697665000000000060448201526064015b60405180910390fd5b60055460000361062e576402540be40061061e670de0b6b3a764000084611ac0565b6106289190611aed565b92915050565b60006106386114ba565b905060008360075461064a9190611b0f565b9050600061065782611519565b9050600060026106678386611b0f565b6106719190611aed565b9050600081610688670de0b6b3a764000089611ac0565b6106929190611aed565b905060006005546004546106a69190611b22565b9050808211156106b4578091505b6000821161070f5760405162461bcd60e51b815260206004820152602260248201527f546f6b656e2063616c63756c6174696f6e20726573756c74656420696e207a65604482015261726f60f01b60648201526084016105f3565b509695505050505050565b60085460009060ff1661072d5750600090565b5060095490565b60008082116107855760405162461bcd60e51b815260206004820152601d60248201527f546f6b656e20616d6f756e74206d75737420626520706f73697469766500000060448201526064016105f3565b6005548211156107cd5760405162461bcd60e51b8152602060048201526013602482015272496e73756666696369656e7420737570706c7960681b60448201526064016105f3565b81600554036107de57505060075490565b60006107e86114ba565b90506000670de0b6b3a76400006107ff8386611ac0565b6108099190611aed565b90506000816007541161081d57600061082b565b8160075461082b9190611b22565b9050600061083882611519565b9050600060026108488387611b0f565b6108529190611aed565b90506000670de0b6b3a7640000610869838a611ac0565b6108739190611aed565b90506000670de0b6b3a7640000610891662386f26fc1000084611ac0565b61089b9190611aed565b90506108a78183611b22565b91506007548211156108f25760405162461bcd60e51b8152602060048201526014602482015273496e73756666696369656e74207265736572766560601b60448201526064016105f3565b600082116109425760405162461bcd60e51b815260206004820181905260248201527f4554482063616c63756c6174696f6e20726573756c74656420696e207a65726f60448201526064016105f3565b50979650505050505050565b60085460009060ff168061096c5750678ac7230489e8000060065410155b156109775750600090565b60065461098c90678ac7230489e80000611b22565b905090565b60006005546000036109a35750600090565b670de0b6b3a76400006005546109b76114ba565b6109c19190611ac0565b61098c9190611aed565b60085460009060ff1615801561098c5750678ac7230489e8000060065410905090565b606060008267ffffffffffffffff811115610a0b57610a0b611b35565b604051908082528060200260200182016040528015610a34578160200160208202803683370190505b50905060005b83811015610b9d576000858583818110610a5657610a56611b4b565b9050602002016020810190610a6b9190611a6d565b6001600160a01b031603610a9e576000828281518110610a8d57610a8d611b4b565b602002602001018181525050610b8b565b6002546000906001600160a01b03166370a08231878785818110610ac457610ac4611b4b565b9050602002016020810190610ad99190611a6d565b6040516001600160e01b031960e084901b1681526001600160a01b039091166004820152602401602060405180830381865afa158015610b1d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b419190611b61565b905060008111610b52576000610b6b565b600454610b6182612710611ac0565b610b6b9190611aed565b838381518110610b7d57610b7d611b4b565b602002602001018181525050505b80610b9581611b7a565b915050610a3a565b509392505050565b610bad611644565b610bb76000611671565b565b610bc16116c1565b60085460ff1615610c145760405162461bcd60e51b815260206004820152601c60248201527f46756e64696e6720676f616c20616c726561647920726561636865640000000060448201526064016105f3565b678ac7230489e8000060065410610c655760405162461bcd60e51b8152602060048201526015602482015274119d5b991a5b99c819dbd85b08195e18d959591959605a1b60448201526064016105f3565b60003411610ca55760405162461bcd60e51b815260206004820152600d60248201526c09aeae6e840e6cadcc8408aa89609b1b60448201526064016105f3565b6001600160a01b038116610cf35760405162461bcd60e51b8152602060048201526015602482015274496e76616c6964206275796572206164647265737360581b60448201526064016105f3565b6000610cfe346105a6565b905060008111610d475760405162461bcd60e51b81526020600482015260146024820152734e6f20746f6b656e7320746f207265636569766560601b60448201526064016105f3565b82811015610d8b5760405162461bcd60e51b81526020600482015260116024820152700a6d8d2e0e0c2ceca40e8dede40d0d2ced607b1b60448201526064016105f3565b6002546040516370a0823160e01b81523060048201526000916001600160a01b0316906370a0823190602401602060405180830381865afa158015610dd4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610df89190611b61565b905081811015610e4a5760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e2062616c616e636500000000000060448201526064016105f3565b678ac7230489e8000034600654610e619190611b0f565b1115610eba5760405162461bcd60e51b815260206004820152602260248201527f507572636861736520776f756c64206578636565642066756e64696e6720676f604482015261185b60f21b60648201526084016105f3565b8160056000828254610ecc9190611b0f565b925050819055503460066000828254610ee59190611b0f565b925050819055503460076000828254610efe9190611b0f565b90915550506007546040519081527f812a312bfbc57c3813f93d3e1a8515055ed46fc860bd4e2ad39b02198d2a3b739060200160405180910390a1600254610f50906001600160a01b031684846116eb565b7f28560f3abba5040bc3bf36673786fbf92ff519ff3b7a2d5c1eddb9b05802171b610f796114ba565b600554610f84610991565b6006546040805194855260208501939093529183015260608201526080810184905260a00160405180910390a1678ac7230489e8000060065410158015610fce575060085460ff16155b15611021576008805460ff191660011790554260098190556040517fbdf8e8154212732e32053db049accdd4ff27639d7028ecf127e2353161b994bf916110189190815260200190565b60405180910390a15b604080518381523460208201526001600160a01b038516917f1cbc5ab135991bd2b6a4b034a04aa2aa086dac1371cb9b16b8b5e2ed6b036bed910160405180910390a26040513481527ff46ad36095af2d29b64cf5d46178e6535ec85f7022f9565462c66ce8830ab6c99060200160405180910390a150506110a260018055565b5050565b60006001600160a01b0382166110f05760405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964206164647265737360881b60448201526064016105f3565b6002546040516370a0823160e01b81526001600160a01b03848116600483015260009216906370a0823190602401602060405180830381865afa15801561113b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061115f9190611b61565b9050806000036111725750600092915050565b60045461118182612710611ac0565b61118b9190611aed565b9392505050565b60006006546000036111a45750600090565b678ac7230489e800006006546127106109c19190611ac0565b6111c56116c1565b600082116112155760405162461bcd60e51b815260206004820152601760248201527f416d6f756e74206d75737420626520706f73697469766500000000000000000060448201526064016105f3565b8160055410156112675760405162461bcd60e51b815260206004820152601c60248201527f43616e6e6f742073656c6c206d6f7265207468616e20737570706c790000000060448201526064016105f3565b600061127283610734565b9050818110156112b75760405162461bcd60e51b815260206004820152601060248201526f2132b637bb9036b4b7103932ba3ab93760811b60448201526064016105f3565b804710156113075760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420636f6e74726163742062616c616e636500000060448201526064016105f3565b60025461131f906001600160a01b031633308661174f565b82600560008282546113319190611b22565b92505081905550806007600082825461134a9190611b22565b90915550506007546040519081527f812a312bfbc57c3813f93d3e1a8515055ed46fc860bd4e2ad39b02198d2a3b739060200160405180910390a1604051600090339083908381818185875af1925050503d80600081146113c7576040519150601f19603f3d011682016040523d82523d6000602084013e6113cc565b606091505b50509050806114135760405162461bcd60e51b8152602060048201526013602482015272115512081d1c985b9cd9995c8819985a5b1959606a1b60448201526064016105f3565b7f28560f3abba5040bc3bf36673786fbf92ff519ff3b7a2d5c1eddb9b05802171b61143c6114ba565b600554611447610991565b6006546040805194855260208501939093529183015260608201526080810186905260a00160405180910390a1604080518581526020810184905233917fed7a144fad14804d5c249145e3e0e2b63a9eb455b76aee5bc92d711e9bba3e4a910160405180910390a250506110a260018055565b60006005546000036114d057506402540be40090565b61098c600754611519565b6114e3611644565b6001600160a01b03811661150d57604051631e4fbdf760e01b8152600060048201526024016105f3565b61151681611671565b50565b600069021e19e0c9bab2400000821161158c57600069021e19e0c9bab240000061154b670de0b6b3a764000085611ac0565b6115559190611aed565b9050670de0b6b3a764000061156b826006611ac0565b61157d90670de0b6b3a7640000611b0f565b611181906402540be400611ac0565b600061159e6402540be4006003611ac0565b905060006115b669021e19e0c9bab240000085611b22565b9050600069021e19e0c9bab24000006115d7670de0b6b3a764000084611ac0565b6115e19190611aed565b90506000670de0b6b3a764000061160c60056115fd8386611ac0565b6116079190611aed565b61178e565b6116169190611b0f565b9050670de0b6b3a764000061162b8286611ac0565b6116359190611aed565b9695505050505050565b919050565b6000546001600160a01b03163314610bb75760405163118cdaa760e01b81523360048201526024016105f3565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6002600154036116e457604051633ee5aeb560e01b815260040160405180910390fd5b6002600155565b6040516001600160a01b0383811660248301526044820183905261174a91859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506118e7565b505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526117889186918216906323b872dd90608401611718565b50505050565b60006001821161179c575090565b816001600160801b82106117b55760809190911c9060401b5b6801000000000000000082106117d05760409190911c9060201b5b64010000000082106117e75760209190911c9060101b5b6201000082106117fc5760109190911c9060081b5b61010082106118105760089190911c9060041b5b601082106118235760049190911c9060021b5b6004821061182f5760011b5b600302600190811c9081858161184757611847611ad7565b048201901c9050600181858161185f5761185f611ad7565b048201901c9050600181858161187757611877611ad7565b048201901c9050600181858161188f5761188f611ad7565b048201901c905060018185816118a7576118a7611ad7565b048201901c905060018185816118bf576118bf611ad7565b048201901c90506118de8185816118d8576118d8611ad7565b04821190565b90039392505050565b600080602060008451602086016000885af18061190a576040513d6000823e3d81fd5b50506000513d9150811561192257806001141561192f565b6001600160a01b0384163b155b1561178857604051635274afe760e01b81526001600160a01b03851660048201526024016105f3565b60006020828403121561196a57600080fd5b5035919050565b6000806020838503121561198457600080fd5b823567ffffffffffffffff8082111561199c57600080fd5b818501915085601f8301126119b057600080fd5b8135818111156119bf57600080fd5b8660208260051b85010111156119d457600080fd5b60209290920196919550909350505050565b6020808252825182820181905260009190848201906040850190845b81811015611a1e57835183529284019291840191600101611a02565b50909695505050505050565b80356001600160a01b038116811461163f57600080fd5b60008060408385031215611a5457600080fd5b82359150611a6460208401611a2a565b90509250929050565b600060208284031215611a7f57600080fd5b61118b82611a2a565b60008060408385031215611a9b57600080fd5b50508035926020909101359150565b634e487b7160e01b600052601160045260246000fd5b808202811582820484141761062857610628611aaa565b634e487b7160e01b600052601260045260246000fd5b600082611b0a57634e487b7160e01b600052601260045260246000fd5b500490565b8082018082111561062857610628611aaa565b8181038181111561062857610628611aaa565b634e487b7160e01b600052604160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b600060208284031215611b7357600080fd5b5051919050565b600060018201611b8c57611b8c611aaa565b506001019056fea26469706673582212201ea1203b0381d6de24de25fe94ea1ae6b054cd359f87d7038f0982c204f836c864736f6c63430008140033000000000000000000000000cbca219204536abacf03172c127d142be789052b000000000000000000000000000000000000000000000000000000000007a120000000000000000000000000000000000000000000000000000000002faf0800
Deployed Bytecode
0x6080604052600436106101fd5760003560e01c80637deb60251161010d578063cc432410116100a0578063e7d4c75e1161006f578063e7d4c75e1461051d578063eb04c36c1461053b578063eb91d37e14610551578063f2fde38b14610566578063fc0c546a1461058657600080fd5b8063cc432410146104ae578063cf1d224b146104ce578063d424f628146104e3578063d79875eb146104fd57600080fd5b8063a10954fe116100dc578063a10954fe1461044e578063aaf5eb6814610464578063abd70aa214610480578063c57981b51461049357600080fd5b80637deb6025146103c85780638da5cb5b146103db5780639245b5701461040d5780639e241e851461042257600080fd5b80632ff2e9dc11610190578063636d6c9d1161015f578063636d6c9d1461034957806365a60c091461036e578063715018a61461039b57806374eedd46146103b25780637c5e2795146102c957600080fd5b80632ff2e9dc146102e2578063378dc3dc1461030257806342e49d5a1461031857806346de2a811461033457600080fd5b80631c9605d2116101cc5780631c9605d21461027f57806320b17a0a146102945780632167c0e3146102b457806327d5b1fd146102c957600080fd5b806306fd9bf614610209578063104b02571461023c5780631190016c1461025257806318160ddd1461026957600080fd5b3661020457005b600080fd5b34801561021557600080fd5b50610229610224366004611958565b6105a6565b6040519081526020015b60405180910390f35b34801561024857600080fd5b5061022960035481565b34801561025e57600080fd5b50610229620f424081565b34801561027557600080fd5b5061022960055481565b34801561028b57600080fd5b5061022961071a565b3480156102a057600080fd5b506102296102af366004611958565b610734565b3480156102c057600080fd5b5061022961094e565b3480156102d557600080fd5b506102296402540be40081565b3480156102ee57600080fd5b506102296b033b2e3c9fd0803ce800000081565b34801561030e57600080fd5b5061022960045481565b34801561032457600080fd5b50610229678ac7230489e8000081565b34801561034057600080fd5b50610229610991565b34801561035557600080fd5b5061035e6109cb565b6040519015158152602001610233565b34801561037a57600080fd5b5061038e610389366004611971565b6109ee565b60405161023391906119e6565b3480156103a757600080fd5b506103b0610ba5565b005b3480156103be57600080fd5b5061022960095481565b6103b06103d6366004611a41565b610bb9565b3480156103e757600080fd5b506000546001600160a01b03165b6040516001600160a01b039091168152602001610233565b34801561041957600080fd5b50600654610229565b34801561042e57600080fd5b506104396007544791565b60408051928352602083019190915201610233565b34801561045a57600080fd5b5061022960075481565b34801561047057600080fd5b50610229670de0b6b3a764000081565b34801561048c57600080fd5b5047610229565b34801561049f57600080fd5b50610229662386f26fc1000081565b3480156104ba57600080fd5b506102296104c9366004611a6d565b6110a6565b3480156104da57600080fd5b50610229611192565b3480156104ef57600080fd5b5060085461035e9060ff1681565b34801561050957600080fd5b506103b0610518366004611a88565b6111bd565b34801561052957600080fd5b5061022969021e19e0c9bab240000081565b34801561054757600080fd5b5061022960065481565b34801561055d57600080fd5b506102296114ba565b34801561057257600080fd5b506103b0610581366004611a6d565b6114db565b34801561059257600080fd5b506002546103f5906001600160a01b031681565b60008082116105fc5760405162461bcd60e51b815260206004820152601b60248201527f45544820616d6f756e74206d75737420626520706f736974697665000000000060448201526064015b60405180910390fd5b60055460000361062e576402540be40061061e670de0b6b3a764000084611ac0565b6106289190611aed565b92915050565b60006106386114ba565b905060008360075461064a9190611b0f565b9050600061065782611519565b9050600060026106678386611b0f565b6106719190611aed565b9050600081610688670de0b6b3a764000089611ac0565b6106929190611aed565b905060006005546004546106a69190611b22565b9050808211156106b4578091505b6000821161070f5760405162461bcd60e51b815260206004820152602260248201527f546f6b656e2063616c63756c6174696f6e20726573756c74656420696e207a65604482015261726f60f01b60648201526084016105f3565b509695505050505050565b60085460009060ff1661072d5750600090565b5060095490565b60008082116107855760405162461bcd60e51b815260206004820152601d60248201527f546f6b656e20616d6f756e74206d75737420626520706f73697469766500000060448201526064016105f3565b6005548211156107cd5760405162461bcd60e51b8152602060048201526013602482015272496e73756666696369656e7420737570706c7960681b60448201526064016105f3565b81600554036107de57505060075490565b60006107e86114ba565b90506000670de0b6b3a76400006107ff8386611ac0565b6108099190611aed565b90506000816007541161081d57600061082b565b8160075461082b9190611b22565b9050600061083882611519565b9050600060026108488387611b0f565b6108529190611aed565b90506000670de0b6b3a7640000610869838a611ac0565b6108739190611aed565b90506000670de0b6b3a7640000610891662386f26fc1000084611ac0565b61089b9190611aed565b90506108a78183611b22565b91506007548211156108f25760405162461bcd60e51b8152602060048201526014602482015273496e73756666696369656e74207265736572766560601b60448201526064016105f3565b600082116109425760405162461bcd60e51b815260206004820181905260248201527f4554482063616c63756c6174696f6e20726573756c74656420696e207a65726f60448201526064016105f3565b50979650505050505050565b60085460009060ff168061096c5750678ac7230489e8000060065410155b156109775750600090565b60065461098c90678ac7230489e80000611b22565b905090565b60006005546000036109a35750600090565b670de0b6b3a76400006005546109b76114ba565b6109c19190611ac0565b61098c9190611aed565b60085460009060ff1615801561098c5750678ac7230489e8000060065410905090565b606060008267ffffffffffffffff811115610a0b57610a0b611b35565b604051908082528060200260200182016040528015610a34578160200160208202803683370190505b50905060005b83811015610b9d576000858583818110610a5657610a56611b4b565b9050602002016020810190610a6b9190611a6d565b6001600160a01b031603610a9e576000828281518110610a8d57610a8d611b4b565b602002602001018181525050610b8b565b6002546000906001600160a01b03166370a08231878785818110610ac457610ac4611b4b565b9050602002016020810190610ad99190611a6d565b6040516001600160e01b031960e084901b1681526001600160a01b039091166004820152602401602060405180830381865afa158015610b1d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b419190611b61565b905060008111610b52576000610b6b565b600454610b6182612710611ac0565b610b6b9190611aed565b838381518110610b7d57610b7d611b4b565b602002602001018181525050505b80610b9581611b7a565b915050610a3a565b509392505050565b610bad611644565b610bb76000611671565b565b610bc16116c1565b60085460ff1615610c145760405162461bcd60e51b815260206004820152601c60248201527f46756e64696e6720676f616c20616c726561647920726561636865640000000060448201526064016105f3565b678ac7230489e8000060065410610c655760405162461bcd60e51b8152602060048201526015602482015274119d5b991a5b99c819dbd85b08195e18d959591959605a1b60448201526064016105f3565b60003411610ca55760405162461bcd60e51b815260206004820152600d60248201526c09aeae6e840e6cadcc8408aa89609b1b60448201526064016105f3565b6001600160a01b038116610cf35760405162461bcd60e51b8152602060048201526015602482015274496e76616c6964206275796572206164647265737360581b60448201526064016105f3565b6000610cfe346105a6565b905060008111610d475760405162461bcd60e51b81526020600482015260146024820152734e6f20746f6b656e7320746f207265636569766560601b60448201526064016105f3565b82811015610d8b5760405162461bcd60e51b81526020600482015260116024820152700a6d8d2e0e0c2ceca40e8dede40d0d2ced607b1b60448201526064016105f3565b6002546040516370a0823160e01b81523060048201526000916001600160a01b0316906370a0823190602401602060405180830381865afa158015610dd4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610df89190611b61565b905081811015610e4a5760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e2062616c616e636500000000000060448201526064016105f3565b678ac7230489e8000034600654610e619190611b0f565b1115610eba5760405162461bcd60e51b815260206004820152602260248201527f507572636861736520776f756c64206578636565642066756e64696e6720676f604482015261185b60f21b60648201526084016105f3565b8160056000828254610ecc9190611b0f565b925050819055503460066000828254610ee59190611b0f565b925050819055503460076000828254610efe9190611b0f565b90915550506007546040519081527f812a312bfbc57c3813f93d3e1a8515055ed46fc860bd4e2ad39b02198d2a3b739060200160405180910390a1600254610f50906001600160a01b031684846116eb565b7f28560f3abba5040bc3bf36673786fbf92ff519ff3b7a2d5c1eddb9b05802171b610f796114ba565b600554610f84610991565b6006546040805194855260208501939093529183015260608201526080810184905260a00160405180910390a1678ac7230489e8000060065410158015610fce575060085460ff16155b15611021576008805460ff191660011790554260098190556040517fbdf8e8154212732e32053db049accdd4ff27639d7028ecf127e2353161b994bf916110189190815260200190565b60405180910390a15b604080518381523460208201526001600160a01b038516917f1cbc5ab135991bd2b6a4b034a04aa2aa086dac1371cb9b16b8b5e2ed6b036bed910160405180910390a26040513481527ff46ad36095af2d29b64cf5d46178e6535ec85f7022f9565462c66ce8830ab6c99060200160405180910390a150506110a260018055565b5050565b60006001600160a01b0382166110f05760405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964206164647265737360881b60448201526064016105f3565b6002546040516370a0823160e01b81526001600160a01b03848116600483015260009216906370a0823190602401602060405180830381865afa15801561113b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061115f9190611b61565b9050806000036111725750600092915050565b60045461118182612710611ac0565b61118b9190611aed565b9392505050565b60006006546000036111a45750600090565b678ac7230489e800006006546127106109c19190611ac0565b6111c56116c1565b600082116112155760405162461bcd60e51b815260206004820152601760248201527f416d6f756e74206d75737420626520706f73697469766500000000000000000060448201526064016105f3565b8160055410156112675760405162461bcd60e51b815260206004820152601c60248201527f43616e6e6f742073656c6c206d6f7265207468616e20737570706c790000000060448201526064016105f3565b600061127283610734565b9050818110156112b75760405162461bcd60e51b815260206004820152601060248201526f2132b637bb9036b4b7103932ba3ab93760811b60448201526064016105f3565b804710156113075760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420636f6e74726163742062616c616e636500000060448201526064016105f3565b60025461131f906001600160a01b031633308661174f565b82600560008282546113319190611b22565b92505081905550806007600082825461134a9190611b22565b90915550506007546040519081527f812a312bfbc57c3813f93d3e1a8515055ed46fc860bd4e2ad39b02198d2a3b739060200160405180910390a1604051600090339083908381818185875af1925050503d80600081146113c7576040519150601f19603f3d011682016040523d82523d6000602084013e6113cc565b606091505b50509050806114135760405162461bcd60e51b8152602060048201526013602482015272115512081d1c985b9cd9995c8819985a5b1959606a1b60448201526064016105f3565b7f28560f3abba5040bc3bf36673786fbf92ff519ff3b7a2d5c1eddb9b05802171b61143c6114ba565b600554611447610991565b6006546040805194855260208501939093529183015260608201526080810186905260a00160405180910390a1604080518581526020810184905233917fed7a144fad14804d5c249145e3e0e2b63a9eb455b76aee5bc92d711e9bba3e4a910160405180910390a250506110a260018055565b60006005546000036114d057506402540be40090565b61098c600754611519565b6114e3611644565b6001600160a01b03811661150d57604051631e4fbdf760e01b8152600060048201526024016105f3565b61151681611671565b50565b600069021e19e0c9bab2400000821161158c57600069021e19e0c9bab240000061154b670de0b6b3a764000085611ac0565b6115559190611aed565b9050670de0b6b3a764000061156b826006611ac0565b61157d90670de0b6b3a7640000611b0f565b611181906402540be400611ac0565b600061159e6402540be4006003611ac0565b905060006115b669021e19e0c9bab240000085611b22565b9050600069021e19e0c9bab24000006115d7670de0b6b3a764000084611ac0565b6115e19190611aed565b90506000670de0b6b3a764000061160c60056115fd8386611ac0565b6116079190611aed565b61178e565b6116169190611b0f565b9050670de0b6b3a764000061162b8286611ac0565b6116359190611aed565b9695505050505050565b919050565b6000546001600160a01b03163314610bb75760405163118cdaa760e01b81523360048201526024016105f3565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6002600154036116e457604051633ee5aeb560e01b815260040160405180910390fd5b6002600155565b6040516001600160a01b0383811660248301526044820183905261174a91859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506118e7565b505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526117889186918216906323b872dd90608401611718565b50505050565b60006001821161179c575090565b816001600160801b82106117b55760809190911c9060401b5b6801000000000000000082106117d05760409190911c9060201b5b64010000000082106117e75760209190911c9060101b5b6201000082106117fc5760109190911c9060081b5b61010082106118105760089190911c9060041b5b601082106118235760049190911c9060021b5b6004821061182f5760011b5b600302600190811c9081858161184757611847611ad7565b048201901c9050600181858161185f5761185f611ad7565b048201901c9050600181858161187757611877611ad7565b048201901c9050600181858161188f5761188f611ad7565b048201901c905060018185816118a7576118a7611ad7565b048201901c905060018185816118bf576118bf611ad7565b048201901c90506118de8185816118d8576118d8611ad7565b04821190565b90039392505050565b600080602060008451602086016000885af18061190a576040513d6000823e3d81fd5b50506000513d9150811561192257806001141561192f565b6001600160a01b0384163b155b1561178857604051635274afe760e01b81526001600160a01b03851660048201526024016105f3565b60006020828403121561196a57600080fd5b5035919050565b6000806020838503121561198457600080fd5b823567ffffffffffffffff8082111561199c57600080fd5b818501915085601f8301126119b057600080fd5b8135818111156119bf57600080fd5b8660208260051b85010111156119d457600080fd5b60209290920196919550909350505050565b6020808252825182820181905260009190848201906040850190845b81811015611a1e57835183529284019291840191600101611a02565b50909695505050505050565b80356001600160a01b038116811461163f57600080fd5b60008060408385031215611a5457600080fd5b82359150611a6460208401611a2a565b90509250929050565b600060208284031215611a7f57600080fd5b61118b82611a2a565b60008060408385031215611a9b57600080fd5b50508035926020909101359150565b634e487b7160e01b600052601160045260246000fd5b808202811582820484141761062857610628611aaa565b634e487b7160e01b600052601260045260246000fd5b600082611b0a57634e487b7160e01b600052601260045260246000fd5b500490565b8082018082111561062857610628611aaa565b8181038181111561062857610628611aaa565b634e487b7160e01b600052604160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b600060208284031215611b7357600080fd5b5051919050565b600060018201611b8c57611b8c611aaa565b506001019056fea26469706673582212201ea1203b0381d6de24de25fe94ea1ae6b054cd359f87d7038f0982c204f836c864736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000cbca219204536abacf03172c127d142be789052b000000000000000000000000000000000000000000000000000000000007a120000000000000000000000000000000000000000000000000000000002faf0800
-----Decoded View---------------
Arg [0] : _token (address): 0xcbca219204536abACF03172c127d142be789052b
Arg [1] : _reserveWeight (uint256): 500000
Arg [2] : _initialSupply (uint256): 800000000
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000cbca219204536abacf03172c127d142be789052b
Arg [1] : 000000000000000000000000000000000000000000000000000000000007a120
Arg [2] : 000000000000000000000000000000000000000000000000000000002faf0800
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.