Source Code
Overview
S Balance
0 S
More Info
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Initialize | 5070396 | 17 days ago | IN | 0 S | 0.00012588 |
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
5070396 | 17 days ago | 0 S |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x8B0e0702...34dC76998 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
VoteModule
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 100 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.24; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol"; import {Initializable} from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import {IVoteModule} from "./interfaces/IVoteModule.sol"; import {IVoter} from "./interfaces/IVoter.sol"; import {IXShadow} from "./interfaces/IXShadow.sol"; contract VoteModule is IVoteModule, ReentrancyGuard, Initializable { /// @inheritdoc IVoteModule address public xShadow; /// @inheritdoc IVoteModule address public voter; IXShadow public stakingToken; IERC20 public underlying; /// @notice rebases are released over 30 minutes uint256 public constant DURATION = 30 minutes; /// @notice cooldown period after depositing uint256 public constant COOLDOWN = 12 hours; /// @notice decimal precision of 1e18 uint256 public constant PRECISION = 10 ** 18; /// @inheritdoc IVoteModule uint256 public totalSupply; /// @inheritdoc IVoteModule uint256 public lastUpdateTime; /// @inheritdoc IVoteModule uint256 public rewardPerTokenStored; /// @inheritdoc IVoteModule uint256 public periodFinish; /// @inheritdoc IVoteModule uint256 public rewardRate; uint256 public dust; /// @inheritdoc IVoteModule mapping(address user => uint256 amount) public balanceOf; /// @inheritdoc IVoteModule mapping(address user => uint256 rewardPerToken) public userRewardPerTokenStored; /// @inheritdoc IVoteModule mapping(address user => uint256 rewards) public storedRewardsPerUser; /// @inheritdoc IVoteModule mapping(address user => uint256 timestamp) public userLastDeposit; /// @inheritdoc IVoteModule mapping(address delegator => address delegatee) public delegates; /// @inheritdoc IVoteModule mapping(address owner => address operator) public admins; constructor() { voter = msg.sender; } function initialize(address _xShadow, address _voter) external initializer { // @dev making sure who deployed calls initialize require(voter == msg.sender, UNAUTHORIZED()); xShadow = _xShadow; voter = _voter; stakingToken = IXShadow(_xShadow); underlying = IERC20(IXShadow(_xShadow).SHADOW()); } /// @dev common multirewarder-esque modifier for updating on interactions modifier updateReward(address account) { /// @dev fetch and store the new rewardPerToken rewardPerTokenStored = rewardPerToken(); /// @dev fetch and store the new last update time lastUpdateTime = lastTimeRewardApplicable(); /// @dev check for address(0) calls from notifyRewardAmount if (account != address(0)) { /// @dev update the individual account's mapping for stored rewards storedRewardsPerUser[account] = earned(account); /// @dev update account's mapping for rewardspertoken userRewardPerTokenStored[account] = rewardPerTokenStored; } _; } /// @inheritdoc IVoteModule function lastTimeRewardApplicable() public view returns (uint256 _lta) { _lta = Math.min(block.timestamp, periodFinish); } /// @inheritdoc IVoteModule function earned(address account) public view returns (uint256 _reward) { _reward = (/// @dev the vote balance of the account (balanceOf[account] * /// @dev current global reward per token, subtracted from the stored reward per token for the user (rewardPerToken() - userRewardPerTokenStored[account])) / /// @dev divide by the 1e18 precision PRECISION) + /// @dev add the existing stored rewards for the account to the total storedRewardsPerUser[account]; } /// @inheritdoc IVoteModule function getReward() external updateReward(msg.sender) nonReentrant { /// @dev redundant _sender storage for visibility (can be removed later likely) address _sender = msg.sender; /// @dev claim all the rewards _claim(_sender); } /// @dev internal claim function to make exiting and claiming easier function _claim(address _user) internal { /// @dev fetch the stored rewards (updated by modifier) uint256 reward = storedRewardsPerUser[_user]; if (reward > 0) { /// @dev zero out the stored rewards storedRewardsPerUser[_user] = 0; /// @dev approve Shadow to xShadow underlying.approve(address(stakingToken), reward); /// @dev convert stakingToken.convertEmissionsToken(reward); /// @dev transfer xShadow to the user IERC20(xShadow).transfer(_user, reward); emit ClaimRewards(_user, reward); } } /// @inheritdoc IVoteModule /// @dev the return value is scaled (multiplied) by PRECISION = 10 ** 18 function rewardPerToken() public view returns (uint256 _rpt) { _rpt = ( /// @dev if there's no staked xShadow totalSupply == 0 /// @dev return the existing value ? rewardPerTokenStored /// @dev else add the existing value : rewardPerTokenStored + /// @dev to remaining time (since update) multiplied by the current reward rate /// @dev scaled to precision of 1e18, then divided by the total supply (((lastTimeRewardApplicable() - lastUpdateTime) * rewardRate * PRECISION) / totalSupply) ); } /// @inheritdoc IVoteModule function depositAll() external { deposit(IERC20(xShadow).balanceOf(msg.sender)); } /// @inheritdoc IVoteModule function deposit( uint256 amount ) public updateReward(msg.sender) nonReentrant { /// @dev ensure the amount is > 0 require(amount != 0, ZERO_AMOUNT()); /// @dev transfer xShadow in IERC20(xShadow).transferFrom(msg.sender, address(this), amount); /// @dev store timestamp userLastDeposit[msg.sender] = block.timestamp; /// @dev update accounting totalSupply += amount; balanceOf[msg.sender] += amount; /// @dev update data IVoter(voter).poke(msg.sender); emit Deposit(msg.sender, amount); } /// @inheritdoc IVoteModule function withdrawAll() external { /// @dev fetch stored balance uint256 _amount = balanceOf[msg.sender]; /// @dev withdraw the stored balance withdraw(_amount); /// @dev claim rewards for the user _claim(msg.sender); } /// @inheritdoc IVoteModule function withdraw( uint256 amount ) public updateReward(msg.sender) nonReentrant { /// @dev ensure the amount is > 0 require(amount != 0, ZERO_AMOUNT()); /// @dev ensure cooldown period has passed in order to withdraw require( userLastDeposit[msg.sender] + COOLDOWN <= block.timestamp, COOLDOWN_ACTIVE() ); /// @dev reduce total "supply" totalSupply -= amount; /// @dev decrement from balance mapping balanceOf[msg.sender] -= amount; /// @dev transfer the xShadow to the caller IERC20(xShadow).transfer(msg.sender, amount); /// @dev update data via poke /// @dev we check in voter that msg.sender is the VoteModule IVoter(voter).poke(msg.sender); emit Withdraw(msg.sender, amount); } /// @inheritdoc IVoteModule function left() public view returns (uint256 _left) { _left = ( /// @dev if the timestamp is past the period finish block.timestamp >= periodFinish /// @dev there are no rewards "left" to stream ? 0 /// @dev multiply the remaining seconds by the rewardRate to determine what is left to stream : ((periodFinish - block.timestamp) * rewardRate) ); } /// @inheritdoc IVoteModule /// @dev this is ONLY callable by xShadow, which has important safety checks function notifyRewardAmount( uint256 amount ) external updateReward(address(0)) nonReentrant { /// @dev ensure > 0 require(amount != 0, ZERO_AMOUNT()); /// @dev only callable by xShadow contract require(msg.sender == xShadow, NOT_XSHADOW()); /// @dev take the SHADOW from the contract to the voteModule underlying.transferFrom(xShadow, address(this), amount); /// @dev add existing dust amount += dust; if (block.timestamp >= periodFinish) { /// @dev the new reward rate being the amount divided by the duration rewardRate = amount / DURATION; /// @dev account dust dust = amount - (rewardRate * DURATION); } else { /// @dev remaining seconds until the period finishes uint256 remaining = periodFinish - block.timestamp; /// @dev remaining tokens to stream via t * rate uint256 _left = remaining * rewardRate; /// @dev update the rewardRate to the notified amount plus what is left, divided by the duration rewardRate = (amount + _left) / DURATION; /// @dev account for dust dust = (amount + _left) - (rewardRate * DURATION); } /// @dev update timestamp for the rebase lastUpdateTime = block.timestamp; /// @dev update periodFinish (when all rewards are streamed) periodFinish = block.timestamp + DURATION; emit NotifyReward(msg.sender, amount); } /// @inheritdoc IVoteModule function delegate(address delegatee) external { bool _isAdded = false; /// @dev if there exists a delegate, and the chosen delegate is the zero address if (delegatee == address(0) && delegates[msg.sender] != address(0)) { /// @dev delete the mapping delete delegates[msg.sender]; } else { /// @dev else update delegation delegates[msg.sender] = delegatee; /// @dev flip to true if a delegate is written _isAdded = true; } /// @dev emit event emit Delegate(msg.sender, delegatee, _isAdded); } /// @inheritdoc IVoteModule function setAdmin(address admin) external { /// @dev visibility setting to false, even though default is false bool _isAdded = false; /// @dev if there exists an admin and the zero address is chosen if (admin == address(0) && admins[msg.sender] != address(0)) { /// @dev wipe mapping delete admins[msg.sender]; } else { /// @dev else update mapping admins[msg.sender] = admin; /// @dev flip to true if an admin is written _isAdded = true; } /// @dev emit event emit SetAdmin(msg.sender, admin, _isAdded); } /// @inheritdoc IVoteModule function isDelegateFor( address caller, address owner ) external view returns (bool approved) { /// @dev check the delegate mapping AND admin mapping due to hierarchy (admin > delegate) return (delegates[owner] == caller || admins[owner] == caller || /// @dev return true if caller is the owner as well caller == owner); } /// @inheritdoc IVoteModule function isAdminFor( address caller, address owner ) external view returns (bool approved) { /// @dev return whether the caller is the address in the map /// @dev return true if caller is the owner as well return (admins[owner] == caller || caller == owner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.26; interface IVoteModule { /** Custom Errors */ /// @dev == 0 error ZERO_AMOUNT(); /// @dev if address is not xShadow error NOT_XSHADOW(); /// @dev error for when the cooldown period has not been passed yet error COOLDOWN_ACTIVE(); /// @dev error for when you try to deposit or withdraw for someone who isn't the msg.sender error NOT_VOTEMODULE(); /// @dev error for when the caller is not authorized error UNAUTHORIZED(); /** Events */ event Deposit(address indexed from, uint256 amount); event Withdraw(address indexed from, uint256 amount); event NotifyReward(address indexed from, uint256 amount); event ClaimRewards(address indexed from, uint256 amount); event Delegate( address indexed delegator, address indexed delegatee, bool indexed isAdded ); event SetAdmin( address indexed owner, address indexed operator, bool indexed isAdded ); /** Functions */ function userLastDeposit( address user ) external view returns (uint256 timestamp); function delegates(address) external view returns (address); /// @notice mapping for admins for a specific address /// @param owner the owner to check against /// @return operator the address that is designated as an admin/operator function admins(address owner) external view returns (address operator); /// @notice returns the last time the reward was modified or periodFinish if the reward has ended function lastTimeRewardApplicable() external view returns (uint256 _ltra); function earned(address account) external view returns (uint256 _reward); /// @notice claims pending rebase rewards function getReward() external; function rewardPerToken() external view returns (uint256 _rewardPerToken); /// @notice deposits all xShadow in the caller's wallet function depositAll() external; /// @notice deposit a specified amount of xShadow function deposit(uint256 amount) external; /// @notice withdraw all xShadow function withdrawAll() external; /// @notice withdraw a specified amount of xShadow function withdraw(uint256 amount) external; /// @notice check for admin perms /// @param operator the address to check /// @param owner the owner to check against for permissions function isAdminFor( address operator, address owner ) external view returns (bool approved); /// @notice check for delegations /// @param delegate the address to check /// @param owner the owner to check against for permissions function isDelegateFor( address delegate, address owner ) external view returns (bool approved); /// @notice rewards pending to be distributed for the reward period /// @return _left rewards remaining in the period function left() external view returns (uint256 _left); /// @notice used by the xShadow contract to notify pending rebases /// @param amount the amount of Shadow to be notified from exit penalties function notifyRewardAmount(uint256 amount) external; /// @notice the address of the xShadow token (staking/voting token) /// @return _xShadow the address function xShadow() external view returns (address _xShadow); /// @notice address of the voter contract /// @return _voter the voter contract address function voter() external view returns (address _voter); /// @notice returns the total voting power (equal to total supply in the VoteModule) /// @return _totalSupply the total voting power function totalSupply() external view returns (uint256 _totalSupply); /// @notice last time the rewards system was updated function lastUpdateTime() external view returns (uint256 _lastUpdateTime); /// @notice rewards per xShadow /// @return _rewardPerToken the amount of rewards per xShadow function rewardPerTokenStored() external view returns (uint256 _rewardPerToken); /// @notice when the 1800 seconds after notifying are up function periodFinish() external view returns (uint256 _periodFinish); /// @notice calculates the rewards per second /// @return _rewardRate the rewards distributed per second function rewardRate() external view returns (uint256 _rewardRate); /// @notice voting power /// @param user the address to check /// @return amount the staked balance function balanceOf(address user) external view returns (uint256 amount); /// @notice rewards per amount of xShadow's staked function userRewardPerTokenStored( address user ) external view returns (uint256 rewardPerToken); /// @notice the amount of rewards claimable for the user /// @param user the address of the user to check /// @return rewards the stored rewards function storedRewardsPerUser( address user ) external view returns (uint256 rewards); /// @notice delegate voting perms to another address /// @param delegatee who you delegate to /// @dev set address(0) to revoke function delegate(address delegatee) external; /// @notice give admin permissions to a another address /// @param operator the address to give administrative perms to /// @dev set address(0) to revoke function setAdmin(address operator) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.26; pragma abicoder v2; interface IVoter { error ACTIVE_GAUGE(address gauge); error GAUGE_INACTIVE(address gauge); error ALREADY_WHITELISTED(); error NOT_AUTHORIZED(address caller); error NOT_WHITELISTED(); error NOT_POOL(); error FORBIDDEN(); error NOT_INIT(); error LENGTH_MISMATCH(); error NO_GAUGE(); error ALREADY_DISTRIBUTED(address gauge, uint256 period); error ZERO_VOTE(address pool); error RATIO_TOO_HIGH(); error NOT_GT_ZERO(); error VOTE_UNSUCCESSFUL(); error UNAUTHORIZED(); event GaugeCreated( address indexed gauge, address creator, address feeDistributor, address indexed pool ); event GaugeKilled(address indexed gauge); event GaugeRevived(address indexed gauge); event Voted(address indexed owner, uint256 weight, address indexed pool); event Abstained(address indexed owner, uint256 weight); event Deposit( address indexed lp, address indexed gauge, address indexed owner, uint256 amount ); event Withdraw( address indexed lp, address indexed gauge, address indexed owner, uint256 amount ); event NotifyReward( address indexed sender, address indexed reward, uint256 amount ); event DistributeReward( address indexed sender, address indexed gauge, uint256 amount ); event EmissionsRatio( address indexed caller, uint256 oldRatio, uint256 newRatio ); event NewGovernor(address indexed sender, address indexed governor); event Whitelisted(address indexed whitelister, address indexed token); event WhitelistRevoked( address indexed forbidder, address indexed token, bool status ); event CustomGaugeCreated( address indexed gauge, address creator, address indexed token ); event MainTickSpacingChanged( address indexed token0, address indexed token1, int24 indexed newMainTickSpacing ); /// @notice returns the address of the current governor /// @return _governor address of the governor function governor() external view returns (address _governor); /// @notice the address of the vote module /// @return _voteModule the vote module contract address function voteModule() external view returns (address _voteModule); /// @notice the address of the shadow launcher plugin to enable third party launchers /// @return _launcherPlugin the address of the plugin function launcherPlugin() external view returns (address _launcherPlugin); /// @notice distributes emissions from the minter to the voter /// @param amount the amount of tokens to notify function notifyRewardAmount(uint256 amount) external; /// @notice distributes the emissions for a specific gauge /// @param _gauge the gauge address function distribute(address _gauge) external; /// @notice returns the address of the gauge factory /// @param _gaugeFactory gauge factory address function gaugeFactory() external view returns (address _gaugeFactory); /// @notice returns the address of the feeDistributor factory /// @return _feeDistributorFactory feeDist factory address function feeDistributorFactory() external view returns (address _feeDistributorFactory); /// @notice returns the address of the minter contract /// @return _minter address of the minter function minter() external view returns (address _minter); /// @notice check if the gauge is active for governance use /// @param _gauge address of the gauge /// @return _trueOrFalse if the gauge is alive function isAlive(address _gauge) external view returns (bool _trueOrFalse); /// @notice allows the token to be paired with other whitelisted assets to participate in governance /// @param _token the address of the token function whitelist(address _token) external; /// @notice effectively disqualifies a token from governance /// @param _token the address of the token function revokeWhitelist(address _token) external; /// @notice returns if the address is a gauge /// @param gauge address of the gauge /// @return _trueOrFalse boolean if the address is a gauge function isGauge(address gauge) external view returns (bool _trueOrFalse); /// @notice disable a gauge from governance /// @param _gauge address of the gauge function killGauge(address _gauge) external; /// @notice re-activate a dead gauge /// @param _gauge address of the gauge function reviveGauge(address _gauge) external; /// @notice re-cast a tokenID's votes /// @param owner address of the owner function poke(address owner) external; /// @notice sets the main tickspacing of a token pairing /// @param tokenA address of tokenA /// @param tokenB address of tokenB /// @param tickSpacing the main tickspacing to set to function setMainTickSpacing( address tokenA, address tokenB, int24 tickSpacing ) external; /// @notice create a legacy-type gauge for an arbitrary token /// @param _token 'token' to be used /// @return _arbitraryGauge the address of the new custom gauge function createArbitraryGauge( address _token ) external returns (address _arbitraryGauge); /// @notice returns if the address is a fee distributor /// @param _feeDistributor address of the feeDist /// @return _trueOrFalse if the address is a fee distributor function isFeeDistributor( address _feeDistributor ) external view returns (bool _trueOrFalse); /// @notice returns the address of the emission's token /// @return _emissionsToken emissions token contract address function emissionsToken() external view returns (address _emissionsToken); /// @notice returns the address of the pool's gauge, if any /// @param _pool pool address /// @return _gauge gauge address function gaugeForPool(address _pool) external view returns (address _gauge); /// @notice returns the address of the pool's feeDistributor, if any /// @param _gauge address of the gauge /// @return _feeDistributor address of the pool's feedist function feeDistributorForGauge( address _gauge ) external view returns (address _feeDistributor); /// @notice returns the new toPool that was redirected fromPool /// @param fromPool address of the original pool /// @return toPool the address of the redirected pool function poolRedirect( address fromPool ) external view returns (address toPool); /// @notice returns the gauge address of a CL pool /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @param tickSpacing tickspacing of the pool /// @return gauge address of the gauge function gaugeForClPool( address tokenA, address tokenB, int24 tickSpacing ) external view returns (address gauge); /// @notice returns the array of all tickspacings for the tokenA/tokenB combination /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @return _ts array of all the tickspacings function tickSpacingsForPair( address tokenA, address tokenB ) external view returns (int24[] memory _ts); /// @notice returns the main tickspacing used in the gauge/governance process /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @return _ts the main tickspacing function mainTickSpacingForPair( address tokenA, address tokenB ) external view returns (int24 _ts); /// @notice returns the block.timestamp divided by 1 week in seconds /// @return period the period used for gauges function getPeriod() external view returns (uint256 period); /// @notice cast a vote to direct emissions to gauges and earn incentives /// @param owner address of the owner /// @param _pools the list of pools to vote on /// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs function vote( address owner, address[] calldata _pools, uint256[] calldata _weights ) external; /// @notice reset the vote of an address /// @param owner address of the owner function reset(address owner) external; /// @notice set the governor address /// @param _governor the new governor address function setGovernor(address _governor) external; /// @notice recover stuck emissions /// @param _gauge the gauge address /// @param _period the period function stuckEmissionsRecovery(address _gauge, uint256 _period) external; /// @notice whitelists extra rewards for a gauge /// @param _gauge the gauge to whitelist rewards to /// @param _reward the reward to whitelist function whitelistGaugeRewards(address _gauge, address _reward) external; /// @notice removes a reward from the gauge whitelist /// @param _gauge the gauge to remove the whitelist from /// @param _reward the reward to remove from the whitelist function removeGaugeRewardWhitelist( address _gauge, address _reward ) external; /// @notice creates a legacy gauge for the pool /// @param _pool pool's address /// @return _gauge address of the new gauge function createGauge(address _pool) external returns (address _gauge); /// @notice create a concentrated liquidity gauge /// @param tokenA the address of tokenA /// @param tokenB the address of tokenB /// @param tickSpacing the tickspacing of the pool /// @return _clGauge address of the new gauge function createCLGauge( address tokenA, address tokenB, int24 tickSpacing ) external returns (address _clGauge); /// @notice claim concentrated liquidity gauge rewards for specific NFP token ids /// @param _gauges array of gauges /// @param _tokens two dimensional array for the tokens to claim /// @param _nfpTokenIds two dimensional array for the NFPs function claimClGaugeRewards( address[] calldata _gauges, address[][] calldata _tokens, uint256[][] calldata _nfpTokenIds ) external; /// @notice claim arbitrary rewards from specific feeDists /// @param owner address of the owner /// @param _feeDistributors address of the feeDists /// @param _tokens two dimensional array for the tokens to claim function claimIncentives( address owner, address[] calldata _feeDistributors, address[][] calldata _tokens ) external; /// @notice claim arbitrary rewards from specific gauges /// @param _gauges address of the gauges /// @param _tokens two dimensional array for the tokens to claim function claimRewards( address[] calldata _gauges, address[][] calldata _tokens ) external; /// @notice distribute emissions to a gauge for a specific period /// @param _gauge address of the gauge /// @param _period value of the period function distributeForPeriod(address _gauge, uint256 _period) external; /// @notice attempt distribution of emissions to all gauges function distributeAll() external; /// @notice distribute emissions to gauges by index /// @param startIndex start of the loop /// @param endIndex end of the loop function batchDistributeByIndex( uint256 startIndex, uint256 endIndex ) external; /// @notice returns the votes cast for a tokenID /// @param owner address of the owner /// @return votes an array of votes casted /// @return weights an array of the weights casted per pool function getVotes( address owner, uint256 period ) external view returns (address[] memory votes, uint256[] memory weights); /// @notice returns an array of all the gauges /// @return _gauges the array of gauges function getAllGauges() external view returns (address[] memory _gauges); /// @notice returns an array of all the feeDists /// @return _feeDistributors the array of feeDists function getAllFeeDistributors() external view returns (address[] memory _feeDistributors); /// @notice sets the xShadowRatio default function setGlobalRatio(uint256 _xRatio) external; /// @notice returns the array of all custom/arbitrary pools function getAllCustomPools() external view returns (address[] memory _customPools); /// @notice whether the token is whitelisted in governance function isWhitelisted(address _token) external view returns (bool _tf); /// @notice function for removing malicious or stuffed tokens function removeFeeDistributorReward( address _feeDist, address _token ) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.24; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IVoter} from "./IVoter.sol"; interface IXShadow is IERC20 { struct VestPosition { /// @dev amount of xShadow uint256 amount; /// @dev start unix timestamp uint256 start; /// @dev start + MAX_VEST (end timestamp) uint256 maxEnd; /// @dev vest identifier (starting from 0) uint256 vestID; } error NOT_WHITELISTED(address); error NOT_MINTER(); error ZERO(); error NO_VEST(); error ALREADY_EXEMPT(); error NOT_EXEMPT(); error CANT_RESCUE(); error NO_CHANGE(); error ARRAY_LENGTHS(); error TOO_HIGH(); error VEST_OVERLAP(); event CancelVesting( address indexed user, uint256 indexed vestId, uint256 amount ); event ExitVesting( address indexed user, uint256 indexed vestId, uint256 amount ); event InstantExit(address indexed user, uint256); event NewSlashingPenalty(uint256 penalty); event NewVest( address indexed user, uint256 indexed vestId, uint256 indexed amount ); event NewVestingTimes(uint256 min, uint256 max); event Converted(address indexed user, uint256); event Exemption(address indexed candidate, bool status, bool success); event XShadowRedeemed(address indexed user, uint256); event NewOperator(address indexed o, address indexed n); event Rebase(address indexed caller, uint256 amount); /// @notice returns info on a user's vests function vestInfo( address user, uint256 ) external view returns (uint256 amount, uint256 start, uint256 maxEnd, uint256 vestID); /// @notice address of the emissionsToken function SHADOW() external view returns (IERC20); /// @notice address of the voter function VOTER() external view returns (IVoter); function MINTER() external view returns (address); function ACCESS_HUB() external view returns (address); /// @notice address of the operator function operator() external view returns (address); /// @notice address of the VoteModule function VOTE_MODULE() external view returns (address); /// @notice max slashing amount function SLASHING_PENALTY() external view returns (uint256); /// @notice the minimum vesting length function MIN_VEST() external view returns (uint256); /// @notice the maximum vesting length function MAX_VEST() external view returns (uint256); function emissionsToken() external view returns (address); /// @notice the last period rebases were distributed function lastDistributedPeriod() external view returns (uint256); /// @notice amount of pvp rebase penalties accumulated pending to be distributed function pendingRebase() external view returns (uint256); /// @notice pauses the contract function pause() external; /// @notice unpauses the contract function unpause() external; /*****************************************************************/ // General use functions /*****************************************************************/ /// @dev mints xShadows for each emissionsToken. function convertEmissionsToken(uint256 _amount) external; /// @notice function called by the minter to send the rebases once a week function rebase() external; /** * @dev exit instantly with a penalty * @param _amount amount of xShadows to exit */ function exit(uint256 _amount) external; /// @dev vesting xShadows --> emissionToken functionality function createVest(uint256 _amount) external; /// @dev handles all situations regarding exiting vests function exitVest(uint256 _vestID) external; /*****************************************************************/ // Permissioned functions, timelock/operator gated /*****************************************************************/ /// @dev allows the operator to redeem collected xShadows function operatorRedeem(uint256 _amount) external; /// @dev allows rescue of any non-stake token function rescueTrappedTokens( address[] calldata _tokens, uint256[] calldata _amounts ) external; /// @notice migrates the operator to another contract function migrateOperator(address _operator) external; /// @notice set exemption status for an address function setExemption( address[] calldata _exemptee, bool[] calldata _exempt ) external; /*****************************************************************/ // Getter functions /*****************************************************************/ /// @notice returns the amount of SHADOW within the contract function getBalanceResiding() external view returns (uint256); /// @notice returns the total number of individual vests the user has function usersTotalVests( address _who ) external view returns (uint256 _numOfVests); /// @notice whether the address is exempt /// @param _who who to check /// @return _exempt whether it's exempt function isExempt(address _who) external view returns (bool _exempt); /// @notice returns the vest info for a user /// @param _who who to check /// @param _vestID vest ID to check /// @return VestPosition vest info function getVestInfo(address _who, uint256 _vestID) external view returns (VestPosition memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
{ "remappings": [ "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/", "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/", "forge-std/=dependencies/forge-std-1.9.4/src/", "permit2/=lib/permit2/", "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/", "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/", "@uniswap/=node_modules/@uniswap/", "base64-sol/=node_modules/base64-sol/", "eth-gas-reporter/=node_modules/eth-gas-reporter/", "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/", "hardhat/=node_modules/hardhat/", "solmate/=node_modules/solmate/" ], "optimizer": { "enabled": true, "runs": 100 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": true, "libraries": {} }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"COOLDOWN_ACTIVE","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NOT_VOTEMODULE","type":"error"},{"inputs":[],"name":"NOT_XSHADOW","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"UNAUTHORIZED","type":"error"},{"inputs":[],"name":"ZERO_AMOUNT","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ClaimRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"delegator","type":"address"},{"indexed":true,"internalType":"address","name":"delegatee","type":"address"},{"indexed":true,"internalType":"bool","name":"isAdded","type":"bool"}],"name":"Delegate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"NotifyReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"bool","name":"isAdded","type":"bool"}],"name":"SetAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"COOLDOWN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"admins","outputs":[{"internalType":"address","name":"operator","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"delegatee","type":"address"}],"name":"delegate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"delegator","type":"address"}],"name":"delegates","outputs":[{"internalType":"address","name":"delegatee","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"dust","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256","name":"_reward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_xShadow","type":"address"},{"internalType":"address","name":"_voter","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"isAdminFor","outputs":[{"internalType":"bool","name":"approved","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"isDelegateFor","outputs":[{"internalType":"bool","name":"approved","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastTimeRewardApplicable","outputs":[{"internalType":"uint256","name":"_lta","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"left","outputs":[{"internalType":"uint256","name":"_left","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"notifyRewardAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"periodFinish","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPerToken","outputs":[{"internalType":"uint256","name":"_rpt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPerTokenStored","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"setAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakingToken","outputs":[{"internalType":"contract IXShadow","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"storedRewardsPerUser","outputs":[{"internalType":"uint256","name":"rewards","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"underlying","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userLastDeposit","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userRewardPerTokenStored","outputs":[{"internalType":"uint256","name":"rewardPerToken","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"voter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"xShadow","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x60806040526004361015610011575f80fd5b5f5f3560e01c80628cc262146111d157806302e8ac8d1461119957806316e640481461115e57806318160ddd146111415780631be05289146111255780632e1a7d4d14610f4d57806339606c1014610f145780633c6b16ab14610d575780633d18b91214610ce45780633df060f314610cab5780634256f5e714610c82578063429b62e514610c4157806346c96aac14610c18578063485cc955146109f45780634b41045914610996578063587cde1e146109555780635c19a95c1461089c5780636f307dc314610873578063704b6c02146107ba57806370a082311461078157806372f702f3146107585780637b0a47ee1461073a57806380faa57d14610714578063853828b614610545578063a2724a4d14610528578063aaf5eb6814610505578063b6b55f25146104e8578063c23a246514610457578063c8f33c9114610439578063cd3daf9d14610416578063de5f6268146101eb578063df136d65146101cd578063ebe2b12b146101af5763fad9aba31461018f575f80fd5b346101ac57806003193601126101ac576020600a54604051908152f35b80fd5b50346101ac57806003193601126101ac576020600854604051908152f35b50346101ac57806003193601126101ac576020600754604051908152f35b50346101ac57806003193601126101ac576001546040516370a0823160e01b815233600482015290602090829060249082906001600160a01b03165afa9081156103675782916103e4575b5061023f61131d565b6007556008548042108142180218600655336103b9575b61025e611376565b80156103aa576001546040516323b872dd60e01b81529060209082906001600160a01b0316818681610295883033600485016112fb565b03925af1801561039f57610372575b50338252600e6020524260408320556102bf81600554611240565b600555338252600b602052604082206102d9828254611240565b905560025482906001600160a01b0316803b1561036357818091602460405180948193632c6a65eb60e21b83523360048401525af180156103675761034e575b50506040519081527fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c60203392a26001815580f35b81610358916112ad565b61036357815f610319565b5080fd5b6040513d84823e3d90fd5b6103939060203d602011610398575b61038b81836112ad565b8101906112e3565b6102a4565b503d610381565b6040513d85823e3d90fd5b630f6fa54560e41b8252600482fd5b6103c23361124d565b338352600d6020526040832055600754338352600c6020526040832055610256565b90506020813d60201161040e575b816103ff602093836112ad565b8101031261036357515f610236565b3d91506103f2565b50346101ac57806003193601126101ac57602061043161131d565b604051908152f35b50346101ac57806003193601126101ac576020600654604051908152f35b50346101ac5760403660031901126101ac576020906104746111f4565b6001600160a01b0361048461120a565b16808352600f845260408320546001600160a01b03928316921682149290919083156104c9575b5082156104bf575b50506040519015158152f35b1490505f806104b3565b8281526010855260409020546001600160a01b0316811492505f6104ab565b50346101ac5760203660031901126101ac5760043561023f61131d565b50346101ac57806003193601126101ac576020604051670de0b6b3a76400008152f35b50346101ac57806003193601126101ac57602060405161a8c08152f35b50346101ac57806003193601126101ac57338152600b602052604081205461056b61131d565b6007556008548042108142180218600655336106e9575b61058a611376565b80156103aa57338252600e602052604082205461a8c081018091116106d55742106106c6576105bb81600554611220565b600555338252600b602052604082206105d5828254611220565b905560015460405163a9059cbb60e01b815233600482015260248101839052906020908290604490829087906001600160a01b03165af1801561039f576106a9575b5060025482906001600160a01b0316803b1561036357818091602460405180948193632c6a65eb60e21b83523360048401525af1801561036757610694575b50506040519081527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436460203392a26001815561069133611394565b80f35b8161069e916112ad565b61036357815f610656565b6106c19060203d6020116103985761038b81836112ad565b610617565b63d9220b6760e01b8252600482fd5b634e487b7160e01b83526011600452602483fd5b6106f23361124d565b338352600d6020526040832055600754338352600c6020526040832055610582565b50346101ac57806003193601126101ac5760206008548042108142180218604051908152f35b50346101ac57806003193601126101ac576020600954604051908152f35b50346101ac57806003193601126101ac576003546040516001600160a01b039091168152602090f35b50346101ac5760203660031901126101ac576020906040906001600160a01b036107a96111f4565b168152600b83522054604051908152f35b50346101ac5760203660031901126101ac576107d46111f4565b6001600160a01b031681811580610855575b156108315733835260106020526040832080546001600160a01b03191690555b151590337fd1805363f4431503eae1e5f36c56c593ca412b7df26632d571879aeccf0190078480a480f35b5033825260106020526040822080546001600160a01b031916821790556001610806565b50338352601060205260408320546001600160a01b031615156107e6565b50346101ac57806003193601126101ac576004546040516001600160a01b039091168152602090f35b50346101ac5760203660031901126101ac576108b66111f4565b6001600160a01b031681811580610937575b1561091357338352600f6020526040832080546001600160a01b03191690555b151590337f045b0fef01772d2fbba53dbd38c9777806eac0865b00af43abcfbcaf50da92068480a480f35b50338252600f6020526040822080546001600160a01b0319168217905560016108e8565b50338352600f60205260408320546001600160a01b031615156108c8565b50346101ac5760203660031901126101ac576020906001600160a01b0361097a6111f4565b168152600f8252604060018060a01b0391205416604051908152f35b50346101ac5760403660031901126101ac576020906109b36111f4565b906001600160a01b036109c461120a565b16808252601084526040909120546001600160a01b03928316921682149182156104bf5750506040519015158152f35b50346101ac5760403660031901126101ac57610a0e6111f4565b610a1661120a565b5f51602061153c5f395f51905f52549160ff8360401c16159267ffffffffffffffff811680159081610c10575b6001149081610c06575b159081610bfd575b50610bee5767ffffffffffffffff1981166001175f51602061153c5f395f51905f525583610bc2575b5060025490336001600160a01b03831603610bb357600180546001600160a01b03199081166001600160a01b0393841690811790925592831691909316176002556003805490911682179055604051631e49236560e21b815290602090829060049082905afa90811561039f578391610b6d575b50600480546001600160a01b0319166001600160a01b0392909216919091179055610b1a5780f35b60ff60401b195f51602061153c5f395f51905f5254165f51602061153c5f395f51905f52557fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602060405160018152a180f35b90506020813d602011610bab575b81610b88602093836112ad565b81010312610ba757516001600160a01b0381168103610ba7575f610af2565b8280fd5b3d9150610b7b565b63075fd2b160e01b8552600485fd5b68ffffffffffffffffff191668010000000000000001175f51602061153c5f395f51905f52555f610a7e565b63f92ee8a960e01b8552600485fd5b9050155f610a55565b303b159150610a4d565b859150610a43565b50346101ac57806003193601126101ac576002546040516001600160a01b039091168152602090f35b50346101ac5760203660031901126101ac576020906001600160a01b03610c666111f4565b16815260108252604060018060a01b0391205416604051908152f35b50346101ac57806003193601126101ac576001546040516001600160a01b039091168152602090f35b50346101ac5760203660031901126101ac576020906040906001600160a01b03610cd36111f4565b168152600d83522054604051908152f35b50346101ac57806003193601126101ac57610cfd61131d565b600755600854804210814218021860065533610d2c575b610d1c611376565b610d2533611394565b6001815580f35b610d353361124d565b338252600d6020526040822055600754338252600c6020526040822055610d14565b50346101ac5760203660031901126101ac57600435610d7461131d565b6007556008548042108142180218600655610d8d611376565b80156103aa576001546001600160a01b031633819003610f0557600480546040516323b872dd60e01b8152939260209285926001600160a01b031691839188918391610ddf91899130919085016112fb565b03925af191821561039f57610dfd92610ee8575b50600a5490611240565b600854428111610e7a575061070881048060095561070881029080820461070814901517156106d557610e309082611220565b600a555b4260065561070842018042116106d5576008556040519081527f095667752957714306e1a6ad83495404412df6fdb932fca6dc849a7ee910d4c160203392a26001815580f35b610e88610e91914290611220565b6009549061122d565b610ead610708610ea18385611240565b04918260095583611240565b6107088202918083046107081490151715610ed45790610ecc91611220565b600a55610e34565b634e487b7160e01b84526011600452602484fd5b610f009060203d6020116103985761038b81836112ad565b610df3565b631325b86960e01b8352600483fd5b50346101ac5760203660031901126101ac576020906040906001600160a01b03610f3c6111f4565b168152600e83522054604051908152f35b50346110a75760203660031901126110a757600435610f6a61131d565b6007556008548042108142180218600655336110fa575b610f89611376565b80156110eb57335f52600e60205260405f205461a8c081018091116110d75742106110c857610fba81600554611220565b600555335f52600b60205260405f20610fd4828254611220565b905560015460405163a9059cbb60e01b81523360048201526024810183905290602090829060449082905f906001600160a01b03165af1801561109c576110ab575b506002546001600160a01b0316803b156110a7575f8091602460405180948193632c6a65eb60e21b83523360048401525af1801561109c57611087575b506040519081527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436460203392a26001815580f35b6110949192505f906112ad565b5f905f611053565b6040513d5f823e3d90fd5b5f80fd5b6110c39060203d6020116103985761038b81836112ad565b611016565b63d9220b6760e01b5f5260045ffd5b634e487b7160e01b5f52601160045260245ffd5b630f6fa54560e41b5f5260045ffd5b6111033361124d565b335f52600d60205260405f2055600754335f52600c60205260405f2055610f81565b346110a7575f3660031901126110a75760206040516107088152f35b346110a7575f3660031901126110a7576020600554604051908152f35b346110a7575f3660031901126110a757600854428111611184575060205f604051908152f35b611194610e886020924290611220565b610431565b346110a75760203660031901126110a7576001600160a01b036111ba6111f4565b165f52600c602052602060405f2054604051908152f35b346110a75760203660031901126110a75760206104316111ef6111f4565b61124d565b600435906001600160a01b03821682036110a757565b602435906001600160a01b03821682036110a757565b919082039182116110d757565b818102929181159184041417156110d757565b919082018092116110d757565b6112aa9060018060a01b0316805f52600b602052670de0b6b3a764000061129660405f205461129061127d61131d565b855f52600c60205260405f205490611220565b9061122d565b04905f52600d60205260405f205490611240565b90565b90601f8019910116810190811067ffffffffffffffff8211176112cf57604052565b634e487b7160e01b5f52604160045260245ffd5b908160209103126110a7575180151581036110a75790565b6001600160a01b03918216815291166020820152604081019190915260600190565b6005548061132c575060075490565b600754611349610e88600854804210814218021860065490611220565b91670de0b6b3a7640000830292808404670de0b6b3a764000014901517156110d7576112aa920490611240565b60025f54146113855760025f55565b633ee5aeb560e01b5f5260045ffd5b6001600160a01b0381165f818152600d60205260408120549192826113ba575b50505050565b5f848152600d6020908152604080832083905560048054600354925163095ea7b360e01b81526001600160a01b03938416928101929092526024820188905290938492604492849291165af1801561109c5761151e575b506003546001600160a01b031691823b156110a7575f80936024604051809681936304ba099d60e21b83528960048401525af1801561109c57611498938591611508575b5060015460405163a9059cbb60e01b81526001600160a01b0394851660048201526024810192909252909391926020928592909116908290859082906044820190565b03925af19081156114fc57917f1f89f96333d3133000ee447473151fa9606543368f02271c9d95ae14f13bcc679391602093506114e1575b50604051908152a25f8080806113b4565b6114f790833d85116103985761038b81836112ad565b6114d0565b604051903d90823e3d90fd5b61151592505f91506112ad565b5f836020611455565b6115369060203d6020116103985761038b81836112ad565b61141156fef0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00a2646970667358221220b2122ffd1e5c1f181befef6acd4527405d68796af9192aa1d6852ea4a5ac8d1464736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.