Overview
S Balance
More Info
ContractCreator
Latest 11 from a total of 11 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Set Staking Pool | 25583806 | 2 days ago | IN | 0 S | 0.00138265 | ||||
Purchase | 25583736 | 2 days ago | IN | 0 S | 0.0015464 | ||||
Fund | 25583408 | 2 days ago | IN | 0 S | 0.00193975 | ||||
Purchase | 25583162 | 2 days ago | IN | 0 S | 0.0015464 | ||||
Set Min Total Pa... | 25582964 | 2 days ago | IN | 0 S | 0.0013693 | ||||
Set Staking Pool | 25581662 | 2 days ago | IN | 0 S | 0.00146265 | ||||
Set Staking Pool | 25581625 | 2 days ago | IN | 0 S | 0.0014103 | ||||
Set Staking Pool | 25581567 | 2 days ago | IN | 0 S | 0.00145765 | ||||
Set Staking Pool | 25581499 | 2 days ago | IN | 0 S | 0.00140765 | ||||
Set Staking Pool | 25581459 | 2 days ago | IN | 0 S | 0.00136265 | ||||
Set Staking Pool | 25581405 | 2 days ago | IN | 0 S | 0.00136265 |
Latest 14 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
25583806 | 2 days ago | 0 S | ||||
25583736 | 2 days ago | 0 S | ||||
25583408 | 2 days ago | 0 S | ||||
25583162 | 2 days ago | 0 S | ||||
25582964 | 2 days ago | 0 S | ||||
25581662 | 2 days ago | 0 S | ||||
25581625 | 2 days ago | 0 S | ||||
25581567 | 2 days ago | 0 S | ||||
25581499 | 2 days ago | 0 S | ||||
25581459 | 2 days ago | 0 S | ||||
25581405 | 2 days ago | 0 S | ||||
25472918 | 3 days ago | 0 S | ||||
25472918 | 3 days ago | 0 S | ||||
25472918 | 3 days ago | Contract Creation | 0 S |
Loading...
Loading
Minimal Proxy Contract for 0x0bd85f1e1dd0f48157b5794a8606295c6e606d14
Contract Name:
Presale
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
pragma solidity ^0.8.0; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import "./interfaces/IStakingPool.sol"; import "./interfaces/IPresale.sol"; import "./Purchasable.sol"; import "./Fundable.sol"; import "./Vestable.sol"; import "./Whitelistable.sol"; contract Presale is Ownable, Purchasable, Fundable, Vestable, Whitelistable, IPresale { mapping(address => uint256) public claimable; mapping(address => uint256) public totalPurchased; string public metadataURI; event EmergencyWithdrawal(address indexed user); event MetadataURIChanged(string metadataURI); event Refund(address indexed user, uint256 amount); bool private isAlreadyInitialized; // Main Staking Pool IStakingPool public stakingPool; constructor( string memory _metadataURI, address _funder, uint256 _salePrice, ERC20 _paymentToken, ERC20 _saleToken, uint256 _softCap, uint256 _hardCap, uint256 _startTime, uint256 _endTime, uint256 _minTotalPayment, uint256 _maxTotalPayment, uint256 _withdrawDelay ) Purchasable(_paymentToken, _salePrice, _softCap, _hardCap, _minTotalPayment, _maxTotalPayment) Vestable(_endTime + _withdrawDelay) Fundable(_paymentToken, _saleToken, _startTime, _endTime, _funder, _msgSender(), _msgSender(), _withdrawDelay) Whitelistable() { _initializePresale( _metadataURI, _funder, _salePrice, _paymentToken, _saleToken, _softCap, _hardCap, _startTime, _endTime, _minTotalPayment, _maxTotalPayment ); _transferOwnership(_msgSender()); } function initialize( string memory _metadataURI, address _funder, uint256 _salePrice, ERC20 _paymentToken, ERC20 _saleToken, uint256 _softCap, uint256 _hardCap, uint256 _startTime, uint256 _endTime, uint256 _minTotalPayment, uint256 _maxTotalPayment, uint256 _withdrawDelay ) external { require(!isAlreadyInitialized, "Already initialized"); Purchasable.initialize(_salePrice, _softCap, _hardCap, _minTotalPayment, _maxTotalPayment); Fundable.initialize(_paymentToken, _saleToken, _startTime, _endTime, _funder, _msgSender(), _msgSender(), _withdrawDelay); _initializePresale( _metadataURI, _funder, _salePrice, _paymentToken, _saleToken, _softCap, _hardCap, _startTime, _endTime, _minTotalPayment, _maxTotalPayment ); } function _initializePresale( string memory _metadataURI, address _funder, uint256 _salePrice, ERC20 _paymentToken, ERC20 _saleToken, uint256 _softCap, uint256 _hardCap, uint256 _startTime, uint256 _endTime, uint256 _minTotalPayment, uint256 _maxTotalPayment ) private { metadataURI = _metadataURI; isAlreadyInitialized = true; emit PresaleCreated( address(this), _metadataURI, _funder, _salePrice, address(_paymentToken), address(_saleToken), _softCap, _hardCap, _startTime, _endTime, _minTotalPayment, _maxTotalPayment ); } function setWithdrawDelay(uint24 _withdrawDelay) public override onlyOwner onlyBeforeSale { setWithdrawTime(endTime + _withdrawDelay); super.setWithdrawDelay(_withdrawDelay); } function setLinearVestingEndTime(uint256 _vestingEndTime) public override onlyOwner onlyBeforeSale { super.setLinearVestingEndTime(_vestingEndTime); } function setCliffPeriod(uint256[] calldata claimTimes, uint8[] calldata pct) public override onlyOwner onlyBeforeSale { super.setCliffPeriod(claimTimes, pct); } function purchase(uint256 paymentAmount) public virtual override onlyDuringSale nonReentrant { require(whitelistRootHash == 0, "use whitelisted purchase"); _purchase(paymentAmount, maxTotalPayment); } function whitelistedPurchase(uint256 paymentAmount, bytes32[] calldata merkleProof) public virtual override onlyDuringSale nonReentrant { require(checkWhitelist(_msgSender(), merkleProof), "proof invalid"); _purchase(paymentAmount, maxTotalPayment); } function withdraw() public virtual override onlyAfterSale nonReentrant { address user = _msgSender(); require(salePrice > 0, "use withdraw giveaway"); uint256 tokenOwed = getCurrentClaimableToken(user); _withdraw(tokenOwed); require(tokenOwed != 0, "no token to be withdrawn"); } function emergencyWithdraw() public nonReentrant { address user = _msgSender(); require(!hasCashed, "sale has been cashed already"); require(!hasWithdrawn[user], "cannot use emergency withdrawal after regular withdrawal"); require(paymentReceived[user] > 0, "you did not contribute to this sale"); TransferHelpers.safeTransferERC20(address(paymentToken), user, paymentReceived[user]); totalPaymentReceived -= paymentReceived[user]; purchaserCount -= 1; paymentReceived[user] = 0; totalPurchased[user] = 0; claimable[user] = 0; emit EmergencyWithdrawal(user); } function withdrawGiveaway(bytes32[] calldata merkleProof) public virtual override onlyAfterSale nonReentrant { address user = _msgSender(); require(salePrice == 0, "not a giveaway"); require(whitelistRootHash == 0 || checkWhitelist(user, merkleProof), "proof invalid"); uint256 tokenOwed = getCurrentClaimableToken(user); if (!hasWithdrawn[user]) { claimable[user] = tokenOwed; totalPurchased[user] = tokenOwed; } _withdraw(tokenOwed); require(tokenOwed > 0, "withdraw giveaway amount low"); } function _purchase(uint256 paymentAmount, uint256 remaining) internal override { totalPaymentReceived += paymentAmount; super._purchase(paymentAmount, remaining); uint256 tokenPurchased = (paymentReceived[_msgSender()] * SALE_PRICE_DECIMALS) / salePrice; totalPurchased[_msgSender()] = tokenPurchased; claimable[_msgSender()] = tokenPurchased; } function _withdraw(uint256 tokenOwed) internal override { super._withdraw(tokenOwed); latestClaimTime[_msgSender()] = block.timestamp; claimable[_msgSender()] -= tokenOwed; } function getSaleTokensSold() internal view override returns (uint256 amount) { return (totalPaymentReceived * SALE_PRICE_DECIMALS) / salePrice; } function getCurrentClaimableToken(address user) public view returns (uint256) { uint256 baseTokens = getUnlockedToken(totalPurchased[user], claimable[user], user); StakingTiers rank = getUserRank(); // Apply multiplier based on staking rank if (rank == StakingTiers.RANK1) { return (baseTokens * 15000) / 10000; // 1.5x } else if (rank == StakingTiers.RANK2) { return (baseTokens * 20000) / 10000; // 2x } else if (rank == StakingTiers.RANK3) { return (baseTokens * 25000) / 10000; // 2.5x } else if (rank == StakingTiers.RANK4) { return (baseTokens * 30000) / 10000; // 3x } else if (rank == StakingTiers.RANK5) { return (baseTokens * 35000) / 10000; // 3.5x } // Default: no multiplier return baseTokens; } function checkWhitelist(address user, bytes32[] calldata merkleProof) public view virtual returns (bool) { bytes32 leaf = keccak256(abi.encodePacked(user)); return MerkleProof.verify(merkleProof, whitelistRootHash, leaf); } function setMetadataURI(string memory _metadataURI) external onlyOwner { metadataURI = _metadataURI; emit MetadataURIChanged(_metadataURI); } function setStakingPool(IStakingPool _stakingPool) external onlyOwner { stakingPool = _stakingPool; } function getUserRank() internal view returns (StakingTiers) { address account = _msgSender(); uint256 amountStaked = stakingPool.amountStaked(account) / 1e18; // Adjust for 18 decimals if (amountStaked >= 50000) { return StakingTiers.RANK5; } else if (amountStaked >= 15000) { return StakingTiers.RANK4; } else if (amountStaked >= 10000) { return StakingTiers.RANK3; } else if (amountStaked >= 5000) { return StakingTiers.RANK2; } else if (amountStaked >= 1000) { return StakingTiers.RANK1; } else { return StakingTiers.NONE; } } function isSoftCapReached() public view returns (bool) { return totalPaymentReceived >= softCap; } function refundIfSoftCapNotReached() public nonReentrant { require(block.timestamp > endTime, "Sale not ended yet"); require(!isSoftCapReached(), "Soft cap was reached"); require(paymentReceived[_msgSender()] > 0, "No funds to refund"); uint256 amountToRefund = paymentReceived[_msgSender()]; paymentReceived[_msgSender()] = 0; totalPaymentReceived -= amountToRefund; purchaserCount -= 1; TransferHelpers.safeTransferERC20(address(paymentToken), _msgSender(), amountToRefund); emit Refund(_msgSender(), amountToRefund); } receive() external payable {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol) pragma solidity ^0.8.0; import "./IAccessControl.sol"; import "../utils/Context.sol"; import "../utils/Strings.sol"; import "../utils/introspection/ERC165.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControl is Context, IAccessControl, ERC165 { struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with a standardized message including the required role. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ * * _Available since v4.1._ */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual override returns (bool) { return _roles[role].members[account]; } /** * @dev Revert with a standard message if `_msgSender()` is missing `role`. * Overriding this function changes the behavior of the {onlyRole} modifier. * * Format of the revert message is described in {_checkRole}. * * _Available since v4.6._ */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Revert with a standard message if `account` is missing `role`. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", Strings.toHexString(account), " is missing role ", Strings.toHexString(uint256(role), 32) ) ) ); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address account) public virtual override { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * May emit a {RoleGranted} event. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== * * NOTE: This function is deprecated in favor of {_grantRole}. */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Grants `role` to `account`. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual { if (!hasRole(role, account)) { _roles[role].members[account] = true; emit RoleGranted(role, account, _msgSender()); } } /** * @dev Revokes `role` from `account`. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual { if (hasRole(role, account)) { _roles[role].members[account] = false; emit RoleRevoked(role, account, _msgSender()); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControl { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { require(proofPos == proofLen, "MerkleProof: invalid multiproof"); unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { require(proofPos == proofLen, "MerkleProof: invalid multiproof"); unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol) pragma solidity ^0.8.0; // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/access/AccessControl.sol"; import "./helpers/TransferHelper.sol"; import "./Taxable.sol"; abstract contract Fundable is Ownable, AccessControl, Taxable, ReentrancyGuard { using SafeERC20 for ERC20; uint64 constant SALE_PRICE_DECIMALS = 10 ** 18; uint64 private constant ONE_HOUR = 3600; uint64 private constant ONE_YEAR = 31556926; uint64 private constant FIVE_YEARS = 157784630; uint64 private constant TEN_YEARS = 315360000; bytes32 public FUNDER_ROLE = keccak256(abi.encodePacked("FUNDER_ROLE")); bytes32 public CASHER_ROLE = keccak256(abi.encodePacked("CASHER_ROLE")); uint256 public startTime; uint256 public endTime; ERC20 private paymentToken; ERC20 public saleToken; mapping(address => bool) public hasWithdrawn; uint256 public saleAmount; bool public hasCashed; uint256 public totalPaymentReceived; uint32 public withdrawerCount; uint256 withdrawDelay; constructor( ERC20 _paymentToken, ERC20 _saleToken, uint256 _startTime, uint256 _endTime, address _funder, address _taxCollector, address _taxSetter, uint256 _withdrawDelay ) Taxable(_taxCollector, _taxSetter) { require(_saleToken != _paymentToken, "saleToken = paymentToken"); require(address(_saleToken) != address(0), "0x0 saleToken"); require(block.timestamp < _startTime, "start timestamp too early"); require(_startTime < _endTime, "end timestamp before start"); paymentToken = _paymentToken; saleToken = _saleToken; startTime = _startTime; endTime = _endTime; withdrawDelay = _withdrawDelay; _grantRole(FUNDER_ROLE, _funder); } function initialize( ERC20 _paymentToken, ERC20 _saleToken, uint256 _startTime, uint256 _endTime, address _funder, address _taxCollector, address _taxSetter, uint256 _withdrawDelay ) internal { _initializeFundable(_paymentToken, _saleToken, _startTime, _endTime, _funder, _taxCollector, _taxSetter, _withdrawDelay); } function _initializeFundable( ERC20 _paymentToken, ERC20 _saleToken, uint256 _startTime, uint256 _endTime, address _funder, address _taxCollector, address _taxSetter, uint256 _withdrawDelay ) private { require(_saleToken != _paymentToken, "saleToken = paymentToken"); require(address(_saleToken) != address(0), "0x0 saleToken"); require(block.timestamp < _startTime, "start timestamp too early"); require(_startTime - ONE_YEAR < block.timestamp, "start time has to be within 1 year"); require(_startTime < _endTime - ONE_HOUR, "end timestamp before start should be least 1 hour"); require(_endTime - TEN_YEARS < _startTime, "end time has to be within 10 years"); require(_funder != address(0), "0x0 funder"); _grantRole(FUNDER_ROLE, _funder); paymentToken = _paymentToken; saleToken = _saleToken; startTime = _startTime; endTime = _endTime; withdrawDelay = _withdrawDelay; } modifier onlyFunder() { require(hasRole(FUNDER_ROLE, _msgSender()), "caller not funder"); _; } modifier onlyCasherOrOwner() { require(hasRole(CASHER_ROLE, _msgSender()) || _msgSender() == owner(), "caller not casher or owner"); _; } modifier onlyBeforeSale() { require(block.timestamp < startTime, "sale already started"); _; } modifier onlyAfterSale() { require(block.timestamp > endTime + withdrawDelay, "can't withdraw before claim is started"); _; } modifier onlyDuringSale() { require(startTime <= block.timestamp, "sale has not begun"); require(block.timestamp < endTime, "sale over"); _; } event SetCasher(address indexed casher); event RemoveCasher(address indexed casher); event Fund(address indexed sender, uint256 amount); event SetWithdrawDelay(uint24 indexed withdrawDelay); event Cash(address indexed sender, uint256 paymentTokenBalance, uint256 saleTokenBalance); event EmergencyTokenRetrieve(address indexed sender, uint256 amount); event Withdraw(address indexed sender, uint256 amount); event UpdateStartTime(uint256 startTime); event UpdateEndTime(uint256 endTime); function setCasher(address _casher) public onlyOwner { require(!hasRole(CASHER_ROLE, _casher), "already casher"); _grantRole(CASHER_ROLE, _casher); emit SetCasher(_casher); } function removeCasher(address _casher) public onlyOwner { require(hasRole(CASHER_ROLE, _casher), "not casher"); _revokeRole(CASHER_ROLE, _casher); emit RemoveCasher(_casher); } function setWithdrawDelay(uint24 _withdrawDelay) public virtual onlyOwner onlyBeforeSale { require(_withdrawDelay < FIVE_YEARS, "withdrawDelay has to be within 5 years"); withdrawDelay = _withdrawDelay; emit SetWithdrawDelay(_withdrawDelay); } function getSaleTokensSold() internal virtual returns (uint256 amount); function fund(uint256 amount) public onlyFunder onlyBeforeSale { TransferHelpers.safeTransferFromERC20(address(saleToken), _msgSender(), address(this), amount); saleAmount += amount; emit Fund(_msgSender(), amount); } function cash() external onlyCasherOrOwner { require(endTime + withdrawDelay < block.timestamp, "cannot withdraw yet"); require(!hasCashed, "already cashed"); hasCashed = true; uint256 paymentTokenBal = paymentToken.balanceOf(address(this)); uint256 collectorsDue = (taxPercentage * paymentTokenBal) / 100; TransferHelpers.safeTransferERC20(address(paymentToken), _msgSender(), paymentTokenBal - collectorsDue); if (collectorsDue > 0) TransferHelpers.safeTransferERC20(address(paymentToken), taxCollector, collectorsDue); uint256 saleTokenBal = saleToken.balanceOf(address(this)); uint256 totalTokensSold = getSaleTokensSold(); uint256 principal = saleAmount < saleTokenBal ? saleTokenBal : saleAmount; uint256 amountUnsold = principal - totalTokensSold; TransferHelpers.safeTransferERC20(address(saleToken), _msgSender(), amountUnsold); emit Cash(_msgSender(), paymentTokenBal, amountUnsold); } function emergencyTokenRetrieve(address token) public onlyOwner onlyAfterSale { require(token != address(saleToken)); uint256 tokenBalance = ERC20(token).balanceOf(address(this)); TransferHelpers.safeTransferERC20(token, _msgSender(), tokenBalance); emit EmergencyTokenRetrieve(_msgSender(), tokenBalance); } function withdraw() public virtual nonReentrant {} function _withdraw(uint256 saleTokenOwed) internal virtual { require(saleTokenOwed > 0, "no token to be withdrawn"); if (!hasWithdrawn[_msgSender()]) { withdrawerCount += 1; hasWithdrawn[_msgSender()] = true; } TransferHelpers.safeTransferERC20(address(saleToken), _msgSender(), saleTokenOwed); emit Withdraw(_msgSender(), saleTokenOwed); } function setStartTime(uint256 _startTime) public onlyOwner { startTime = _startTime; emit UpdateStartTime(_startTime); } function setEndTime(uint256 _endTime) public onlyOwner { require(_endTime > endTime, "can only extend presale"); endTime = _endTime; emit UpdateEndTime(_endTime); } }
pragma solidity ^0.8.0; import "@openzeppelin/contracts/utils/Address.sol"; library TransferHelpers { using Address for address; function safeTransferERC20(address token, address to, uint256 amount) internal { bytes4 encodedFunc = bytes4(keccak256(bytes("transfer(address,uint256)"))); token.functionCall(abi.encodeWithSelector(encodedFunc, to, amount)); } function safeTransferFromERC20(address token, address from, address to, uint256 amount) internal { bytes4 encodedFunc = bytes4(keccak256(bytes("transferFrom(address,address,uint256)"))); token.functionCall(abi.encodeWithSelector(encodedFunc, from, to, amount)); } function safeTransferEther(address to, uint256 amount) internal returns (bool success) { (success, ) = to.call{value: amount}(new bytes(0)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; interface IPresale { error AlreadyInitialized(); event PresaleCreated( address indexed presaleId, string metadataURI, address funder, uint256 salePrice, address indexed paymentToken, address indexed saleToken, uint256 softCap, uint256 hardCap, uint256 startTime, uint256 endTime, uint256 minTotalPayment, uint256 maxTotalPayment ); function initialize( string memory _metadataURI, address _funder, uint256 _salePrice, ERC20 _paymentToken, ERC20 _saleToken, uint256 _softCap, uint256 _hardCap, uint256 _startTime, uint256 _endTime, uint256 _minTotalPayment, uint256 _maxTotalPayment, uint256 _withdrawDelay ) external; }
pragma solidity ^0.8.0; interface IStakingPool { event Stake(address indexed account, uint256 amount, uint256 timestamp); event Unstake(address indexed account, uint256 amount); event Withdrawal(address indexed account, uint amount0, uint256 amount1); event StakeFeePercentageChange(uint16 stakeFeePercentageChange); event WithdrawalFeePercentageChange(uint16 withdrawalFeePercentageChange); event APYRateChange(uint24 apyRate); error ZeroAddressForFeesSet(); error Blocked(); error OnlyModeratorOrOwner(); error RewardIsZero(); error NoStake(); error AlreadyModerator(); error NotModerator(); error AlreadyInitialized(); event RewardsAdded(uint256 reward); event RewardDrained(uint256 amount); function blockedAddresses(address) external view returns (bool); function stakeFeePercentage() external view returns (uint16); function token0() external view returns (address); function token1() external view returns (address); function apyRate() external view returns (uint24); function withdrawalIntervals() external view returns (uint256); function feeReceiver() external view returns (address); function amountStaked(address) external view returns (uint256); function lastStakeTime(address) external view returns (uint256); function nextWithdrawalTime(address) external view returns (uint256); function blocked(address _account) external view returns (bool); event Initialized( address newOwner, address token0, address token1, uint24 apyRate, uint16 stakeFeePercentage, uint16 withdrawalFeePercentage, address feeReceiver, uint256 intervals ); function initialize( address _newOwner, address _token0, address _token1, uint24 _apyRate, uint16 _stakeFeePercentage, uint16 _withdrawalFeePercentage, address _feeReceiver, uint256 _intervals ) external; }
pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/utils/Address.sol"; import "./helpers/TransferHelper.sol"; abstract contract Purchasable is Ownable, ReentrancyGuard { using Address for address; using SafeERC20 for ERC20; enum StakingTiers { NONE, RANK1, RANK2, RANK3, RANK4, RANK5 } // payment token ERC20 public immutable paymentToken; // price of the sale token uint256 public salePrice; // max for payment token amount uint256 public maxTotalPayment; // optional min for payment token amount uint256 public minTotalPayment; // Soft Cap uint256 public softCap; // Hard Cap uint256 public hardCap; mapping(address => uint256) public paymentReceived; uint32 public purchaserCount; event Purchase(address indexed sender, uint256 paymentAmount); event SetMinTotalPayment(uint256 indexed minTotalPayment); event SetMaxTotalPayment(uint256 indexed maxTotalPayment); event SetSalePrice(uint256 indexed salePrice); event SetSoftCap(uint256 indexed softCap); event SetHardCap(uint256 indexed hardCap); event SetRefundPeriod(uint256 indexed refundPeriod); constructor(ERC20 _paymentToken, uint256 _salePrice, uint256 _softCap, uint256 _hardCap, uint256 _minTotalPayment, uint256 _maxTotalPayment) { require(address(_paymentToken) != address(0), "0x0 paymentToken"); require(_salePrice > 0, "salePrice must be positive"); require(_softCap <= _hardCap, "softCap > hardCap"); require(_minTotalPayment <= _maxTotalPayment, "minTotalPayment > maxTotalPayment"); paymentToken = _paymentToken; salePrice = _salePrice; softCap = _softCap; hardCap = _hardCap; minTotalPayment = _minTotalPayment; maxTotalPayment = _maxTotalPayment; } function initialize(uint256 _salePrice, uint256 _softCap, uint256 _hardCap, uint256 _minTotalPayment, uint256 _maxTotalPayment) internal { _initializePurchasable(_salePrice, _softCap, _hardCap, _minTotalPayment, _maxTotalPayment); } function _initializePurchasable( uint256 _salePrice, uint256 _softCap, uint256 _hardCap, uint256 _minTotalPayment, uint256 _maxTotalPayment ) private { require(_salePrice == 0 || (_salePrice != 0 && address(paymentToken).isContract()), "Invalid payment token for non-zero sale price"); require(_minTotalPayment <= _maxTotalPayment, "minTotalPayment must be <= maxTotalPayment"); require(_softCap <= _hardCap, "softCap must be <= hardCap"); require(_maxTotalPayment > 0, "maxTotalPayment must be positive"); salePrice = _salePrice; minTotalPayment = _minTotalPayment; maxTotalPayment = _maxTotalPayment; softCap = _softCap; hardCap = _hardCap; } function setMinTotalPayment(uint256 _minTotalPayment) public onlyOwner { minTotalPayment = _minTotalPayment; emit SetMinTotalPayment(_minTotalPayment); } function setMaxTotalPayment(uint256 _maxTotalPayment) public onlyOwner { maxTotalPayment = _maxTotalPayment; emit SetMaxTotalPayment(_maxTotalPayment); } function setSalePrice(uint256 _salePrice) public onlyOwner { require(_salePrice > 0, "Price must be positive"); salePrice = _salePrice; emit SetSalePrice(_salePrice); } function setSoftCap(uint256 _softCap) public onlyOwner { softCap = _softCap; emit SetSoftCap(_softCap); } function setHardCap(uint256 _hardCap) public onlyOwner { hardCap = _hardCap; emit SetHardCap(_hardCap); } function purchase(uint256 paymentAmount) public virtual nonReentrant {} function _purchase(uint256 paymentAmount, uint256 remaining) internal virtual { require(paymentAmount >= minTotalPayment, "amount below min"); require(paymentAmount <= remaining, "exceeds max payment"); TransferHelpers.safeTransferFromERC20(address(paymentToken), _msgSender(), address(this), paymentAmount); if (paymentReceived[_msgSender()] == 0) purchaserCount += 1; paymentReceived[_msgSender()] += paymentAmount; emit Purchase(_msgSender(), paymentAmount); } }
pragma solidity ^0.8.0; import "@openzeppelin/contracts/access/AccessControl.sol"; import "@openzeppelin/contracts/utils/Context.sol"; abstract contract Taxable is Context, AccessControl { address public taxCollector; uint16 public taxPercentage = 1000; // Default : 10% (Basis Points) bytes32 public taxSetterRole = keccak256(abi.encodePacked("TAX_SETTER_ROLE")); constructor(address _taxCollector, address _taxSetter) { require(_taxCollector != address(0), "0x0 taxCollector"); require(_taxSetter != address(0), "0x0 taxSetter"); taxCollector = _taxCollector; _grantRole(taxSetterRole, _taxSetter); } modifier onlyTaxSetter() { require(hasRole(taxSetterRole, _msgSender()), "must be tax setter"); _; } function setTaxPercentage(uint16 _taxPercentage) external onlyTaxSetter { taxPercentage = _taxPercentage; } function setTaxCollector(address _taxCollector) external onlyTaxSetter { taxCollector = _taxCollector; } }
pragma solidity ^0.8.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./helpers/TransferHelper.sol"; // Inspiration: https://github.com/ImpossibleFinance/launchpad-contracts/blob/main/contracts/IFVestable.sol abstract contract Vestable is Ownable { uint256 public withdrawTime; mapping(address => uint256) public latestClaimTime; using SafeMath for uint256; // for linear vesting uint256 public linearVestingEndTime; event SetLinearVestingEndTime(uint256 indexed linearVestingEndTime); // for cliff vesting struct CliffVesting { uint256 claimTime; uint8 percentage; } CliffVesting[] public cliffPeriod; event SetCliffVestingPeriod(CliffVesting[] indexed cliffPeriod); constructor(uint256 _withdrawTime) { require(_withdrawTime > block.timestamp, "withdrawTime must be in future"); withdrawTime = _withdrawTime; } function setWithdrawTime(uint256 _withdrawTime) internal { withdrawTime = _withdrawTime; } function getCliffPeriod() external view returns (CliffVesting[] memory) { return cliffPeriod; } function setLinearVestingEndTime(uint256 _linearVestingEndTime) public virtual onlyOwner { require(_linearVestingEndTime > withdrawTime, "vesting end time has to be after withdrawal start time"); linearVestingEndTime = _linearVestingEndTime; delete cliffPeriod; emit SetLinearVestingEndTime(_linearVestingEndTime); } function setCliffPeriod(uint256[] calldata claimTimes, uint8[] calldata pct) public virtual onlyOwner { require(claimTimes.length == pct.length, "dates and pct doesn't match"); require(claimTimes.length > 0, "input is empty"); require(claimTimes.length <= 100, "input length cannot exceed 100"); delete cliffPeriod; uint256 maxDate; uint8 totalPct; require(claimTimes[0] > withdrawTime, "first claim time is before end time + withdraw delay"); for (uint256 i = 0; i < claimTimes.length; i++) { require(maxDate < claimTimes[i], "dates not in ascending order"); maxDate = claimTimes[i]; totalPct += pct[i]; cliffPeriod.push(CliffVesting(claimTimes[i], pct[i])); } require(totalPct == 100, "total input percentage doesn't equal to 100"); linearVestingEndTime = 0; emit SetCliffVestingPeriod(cliffPeriod); } function getUnlockedToken(uint256 totalPurchased, uint256 claimable, address user) public view virtual returns (uint256) { // linear vesting if (linearVestingEndTime > block.timestamp) { // current claimable = total purchased * (now - last claimed time) / (total vesting time) return (totalPurchased * (block.timestamp - Math.max(latestClaimTime[user], withdrawTime))) / (linearVestingEndTime - withdrawTime); } // cliff vesting uint256 cliffPeriodLength = cliffPeriod.length; if (cliffPeriodLength != 0 && cliffPeriod[cliffPeriodLength - 1].claimTime > block.timestamp) { uint8 claimablePct; for (uint8 i; i < cliffPeriodLength; i++) { // if the cliff timestamp has been passed, add the claimable percentage if (cliffPeriod[i].claimTime > block.timestamp) { break; } if (latestClaimTime[user] < cliffPeriod[i].claimTime) { claimablePct += cliffPeriod[i].percentage; } } if (claimablePct == 0) { return 0; } return (totalPurchased * claimablePct) / 100; } return claimable; } }
pragma solidity ^0.8.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/access/AccessControl.sol"; abstract contract Whitelistable is Ownable, AccessControl, ReentrancyGuard { bytes32 public whitelistRootHash; bytes32 public WHITELIST_SETTER_ROLE = keccak256(abi.encodePacked("WHITELIST_SETTER_ROLE")); event SetWhitelistSetter(address indexed whitelistSetter); event RemoveWhitelistSetter(address indexed whitelistSetter); event SetWhitelist(bytes32 indexed whitelistRootHash); modifier onlyWhitelistSetterOrOwner() { require(hasRole(WHITELIST_SETTER_ROLE, _msgSender()) || _msgSender() == owner(), "caller not whitelist setter or owner"); _; } function setWhitelistSetter(address _whitelistSetter) public onlyOwner { require(!hasRole(WHITELIST_SETTER_ROLE, _whitelistSetter), "already whitelist setter"); _grantRole(WHITELIST_SETTER_ROLE, _whitelistSetter); emit SetWhitelistSetter(_whitelistSetter); } function removeWhitelistSetter(address _whitelistSetter) public onlyOwner { require(hasRole(WHITELIST_SETTER_ROLE, _whitelistSetter), "not whitelist setter"); _revokeRole(WHITELIST_SETTER_ROLE, _whitelistSetter); emit RemoveWhitelistSetter(_whitelistSetter); } function setWhitelist(bytes32 _whitelistRootHash) public onlyWhitelistSetterOrOwner { whitelistRootHash = _whitelistRootHash; emit SetWhitelist(_whitelistRootHash); } function whitelistedPurchase(uint256 paymentAmount, bytes32[] calldata merkleProof) public virtual {} function withdrawGiveaway(bytes32[] calldata merkleProof) public virtual nonReentrant {} constructor() { _transferOwnership(_msgSender()); } }
{ "viaIR": true, "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"string","name":"_metadataURI","type":"string"},{"internalType":"address","name":"_funder","type":"address"},{"internalType":"uint256","name":"_salePrice","type":"uint256"},{"internalType":"contract ERC20","name":"_paymentToken","type":"address"},{"internalType":"contract ERC20","name":"_saleToken","type":"address"},{"internalType":"uint256","name":"_softCap","type":"uint256"},{"internalType":"uint256","name":"_hardCap","type":"uint256"},{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"uint256","name":"_endTime","type":"uint256"},{"internalType":"uint256","name":"_minTotalPayment","type":"uint256"},{"internalType":"uint256","name":"_maxTotalPayment","type":"uint256"},{"internalType":"uint256","name":"_withdrawDelay","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"paymentTokenBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"saleTokenBalance","type":"uint256"}],"name":"Cash","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyTokenRetrieve","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"EmergencyWithdrawal","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Fund","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"metadataURI","type":"string"}],"name":"MetadataURIChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"presaleId","type":"address"},{"indexed":false,"internalType":"string","name":"metadataURI","type":"string"},{"indexed":false,"internalType":"address","name":"funder","type":"address"},{"indexed":false,"internalType":"uint256","name":"salePrice","type":"uint256"},{"indexed":true,"internalType":"address","name":"paymentToken","type":"address"},{"indexed":true,"internalType":"address","name":"saleToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"softCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"hardCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"minTotalPayment","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"maxTotalPayment","type":"uint256"}],"name":"PresaleCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"paymentAmount","type":"uint256"}],"name":"Purchase","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Refund","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"casher","type":"address"}],"name":"RemoveCasher","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"whitelistSetter","type":"address"}],"name":"RemoveWhitelistSetter","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"casher","type":"address"}],"name":"SetCasher","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint256","name":"claimTime","type":"uint256"},{"internalType":"uint8","name":"percentage","type":"uint8"}],"indexed":true,"internalType":"struct Vestable.CliffVesting[]","name":"cliffPeriod","type":"tuple[]"}],"name":"SetCliffVestingPeriod","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"hardCap","type":"uint256"}],"name":"SetHardCap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"linearVestingEndTime","type":"uint256"}],"name":"SetLinearVestingEndTime","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"maxTotalPayment","type":"uint256"}],"name":"SetMaxTotalPayment","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"minTotalPayment","type":"uint256"}],"name":"SetMinTotalPayment","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"refundPeriod","type":"uint256"}],"name":"SetRefundPeriod","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"SetSalePrice","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"softCap","type":"uint256"}],"name":"SetSoftCap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"whitelistRootHash","type":"bytes32"}],"name":"SetWhitelist","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"whitelistSetter","type":"address"}],"name":"SetWhitelistSetter","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint24","name":"withdrawDelay","type":"uint24"}],"name":"SetWithdrawDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"UpdateEndTime","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"}],"name":"UpdateStartTime","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"CASHER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FUNDER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WHITELIST_SETTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cash","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"checkWhitelist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"cliffPeriod","outputs":[{"internalType":"uint256","name":"claimTime","type":"uint256"},{"internalType":"uint8","name":"percentage","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"emergencyTokenRetrieve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"endTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"fund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCliffPeriod","outputs":[{"components":[{"internalType":"uint256","name":"claimTime","type":"uint256"},{"internalType":"uint8","name":"percentage","type":"uint8"}],"internalType":"struct Vestable.CliffVesting[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getCurrentClaimableToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalPurchased","type":"uint256"},{"internalType":"uint256","name":"claimable","type":"uint256"},{"internalType":"address","name":"user","type":"address"}],"name":"getUnlockedToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"hardCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hasCashed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasWithdrawn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_metadataURI","type":"string"},{"internalType":"address","name":"_funder","type":"address"},{"internalType":"uint256","name":"_salePrice","type":"uint256"},{"internalType":"contract ERC20","name":"_paymentToken","type":"address"},{"internalType":"contract ERC20","name":"_saleToken","type":"address"},{"internalType":"uint256","name":"_softCap","type":"uint256"},{"internalType":"uint256","name":"_hardCap","type":"uint256"},{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"uint256","name":"_endTime","type":"uint256"},{"internalType":"uint256","name":"_minTotalPayment","type":"uint256"},{"internalType":"uint256","name":"_maxTotalPayment","type":"uint256"},{"internalType":"uint256","name":"_withdrawDelay","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isSoftCapReached","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"latestClaimTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"linearVestingEndTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTotalPayment","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minTotalPayment","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"paymentReceived","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paymentToken","outputs":[{"internalType":"contract ERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"paymentAmount","type":"uint256"}],"name":"purchase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"purchaserCount","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refundIfSoftCapNotReached","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_casher","type":"address"}],"name":"removeCasher","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_whitelistSetter","type":"address"}],"name":"removeWhitelistSetter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"saleAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"salePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleToken","outputs":[{"internalType":"contract ERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_casher","type":"address"}],"name":"setCasher","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"claimTimes","type":"uint256[]"},{"internalType":"uint8[]","name":"pct","type":"uint8[]"}],"name":"setCliffPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_endTime","type":"uint256"}],"name":"setEndTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_hardCap","type":"uint256"}],"name":"setHardCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_vestingEndTime","type":"uint256"}],"name":"setLinearVestingEndTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxTotalPayment","type":"uint256"}],"name":"setMaxTotalPayment","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_metadataURI","type":"string"}],"name":"setMetadataURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minTotalPayment","type":"uint256"}],"name":"setMinTotalPayment","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_salePrice","type":"uint256"}],"name":"setSalePrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_softCap","type":"uint256"}],"name":"setSoftCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IStakingPool","name":"_stakingPool","type":"address"}],"name":"setStakingPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startTime","type":"uint256"}],"name":"setStartTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_taxCollector","type":"address"}],"name":"setTaxCollector","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"_taxPercentage","type":"uint16"}],"name":"setTaxPercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_whitelistRootHash","type":"bytes32"}],"name":"setWhitelist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_whitelistSetter","type":"address"}],"name":"setWhitelistSetter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint24","name":"_withdrawDelay","type":"uint24"}],"name":"setWithdrawDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"softCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingPool","outputs":[{"internalType":"contract IStakingPool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"taxCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"taxPercentage","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"taxSetterRole","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalPaymentReceived","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"totalPurchased","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"whitelistRootHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"paymentAmount","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"whitelistedPurchase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"withdrawGiveaway","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdrawerCount","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.