Sonic Blaze Testnet

Contract

0x83F4AC7d5d8EDFC2103563a7a7347e803A870AaF

Overview

S Balance

Sonic Blaze LogoSonic Blaze LogoSonic Blaze Logo0 S

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Set Fee To247032482025-03-05 8:12:174 days ago1741162337IN
0x83F4AC7d...03A870AaF
0 S0.000047871

Latest 1 internal transaction

Parent Transaction Hash Block From To
247032482025-03-05 8:12:174 days ago1741162337  Contract Creation0 S
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
OutrunAMMFactory

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 100000 runs

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 16 : OutrunAMMFactory.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

import {IOutrunAMMPair, OutrunAMMPair} from "./OutrunAMMPair.sol";
import {IOutrunAMMFactory} from "./interfaces/IOutrunAMMFactory.sol";

contract OutrunAMMFactory is IOutrunAMMFactory, Ownable {
    uint256 public immutable swapFeeRate;
    address public immutable pairImplementation;

    address public feeTo;
    address[] public allPairs;
    
    mapping(address => mapping(address => address)) public getPair;

    constructor(
        address owner_, 
        address pairImplementation_, 
        uint256 swapFeeRate_
    ) Ownable(owner_) {
        swapFeeRate = swapFeeRate_;
        pairImplementation = pairImplementation_;
    }

    function allPairsLength() external view returns (uint256) {
        return allPairs.length;
    }

    function createPair(address tokenA, address tokenB) external returns (address pair) {
        require(tokenA != tokenB, IdenticalAddresses());

        (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
        require(token0 != address(0), ZeroAddress());
        require(getPair[token0][token1] == address(0), PairExists()); // single check is sufficient

        bytes32 salt = keccak256(abi.encodePacked(token0, token1, swapFeeRate));
        pair = Clones.cloneDeterministic(pairImplementation, salt);
        IOutrunAMMPair(pair).initialize(token0, token1, swapFeeRate);
        
        getPair[token0][token1] = pair;
        getPair[token1][token0] = pair; // populate mapping in the reverse direction
        allPairs.push(pair);

        emit PairCreated(token0, token1, pair, allPairs.length);
    }

    function setFeeTo(address _feeTo) external onlyOwner {
        feeTo = _feeTo;
    }
}

File 2 of 16 : Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    /**
     * @dev A clone instance deployment failed.
     */
    error ERC1167FailedCreateClone();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(0, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert ERC1167FailedCreateClone();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(0, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert ERC1167FailedCreateClone();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := keccak256(add(ptr, 0x43), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

File 3 of 16 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 4 of 16 : OutrunAMMPair.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import {UQ112x112} from "../libraries/UQ112x112.sol";
import {FixedPoint128} from "../libraries/FixedPoint128.sol";
import {Initializable} from "../libraries/Initializable.sol";
import {IOutrunAMMPair} from "./interfaces/IOutrunAMMPair.sol";
import {ReentrancyGuard} from "../libraries/ReentrancyGuard.sol";
import {IOutrunAMMCallee} from "./interfaces/IOutrunAMMCallee.sol";
import {IOutrunAMMFactory} from "./interfaces/IOutrunAMMFactory.sol";
import {IOutrunAMMERC20, OutrunAMMERC20} from "./OutrunAMMERC20.sol";

contract OutrunAMMPair is IOutrunAMMPair, OutrunAMMERC20, ReentrancyGuard, Initializable {
    using UQ112x112 for uint224;

    bytes4 private constant SELECTOR = bytes4(keccak256(bytes("transfer(address,uint256)")));
    uint256 public constant RATIO = 10000;
    uint256 public constant MINIMUM_LIQUIDITY = 1000;

    address public factory;
    address public token0;
    address public token1;
    uint256 public swapFeeRate;

    uint112 private reserve0; // uses single storage slot, accessible via getReserves
    uint112 private reserve1; // uses single storage slot, accessible via getReserves
    uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves

    uint256 public price0CumulativeLast;
    uint256 public price1CumulativeLast;
    uint256 public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event

    uint256 public feeGrowthX128; // accumulate maker fee per LP X128
    mapping(address account => uint256) public feeGrowthRecordX128; // record the feeGrowthX128 when calc maker's append fee
    mapping(address account => uint256) public unClaimedFeesX128;

    function getPairTokens() external view override returns (address _token0, address _token1) {
        _token0 = token0;
        _token1 = token1;
    }

    function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
        _reserve0 = reserve0;
        _reserve1 = reserve1;
        _blockTimestampLast = blockTimestampLast;
    }

    /**
     * @dev Preview unclaimed maker fee
     */
    function previewMakerFee() external view override returns (uint256 amount0, uint256 amount1) {
        address msgSender = msg.sender;
        uint256 feeAppendX128 = balanceOf[msgSender] * (feeGrowthX128 - feeGrowthRecordX128[msgSender]);
        uint256 unClaimedFeeX128 = unClaimedFeesX128[msgSender];
        
        if (feeAppendX128 > 0) unClaimedFeeX128 += feeAppendX128;
        if (unClaimedFeeX128 == 0) return (0, 0);

        uint256 rootKLast = Math.sqrt(kLast);
        amount0 = Math.mulDiv(unClaimedFeeX128, IERC20(token0).balanceOf(address(this)), FixedPoint128.Q128 * rootKLast);
        amount1 = Math.mulDiv(unClaimedFeeX128, IERC20(token1).balanceOf(address(this)), FixedPoint128.Q128 * rootKLast);
    }

    // called once by the factory at time of deployment
    function initialize(
        address _token0, 
        address _token1, 
        uint256 _swapFeeRate
    ) external initializer {
        require(_swapFeeRate < RATIO, FeeRateOverflow());

        token0 = _token0;
        token1 = _token1;
        swapFeeRate = _swapFeeRate;
        factory = msg.sender;
    }

    /**
     * @dev Mint liquidity (LP)
     * @param to - address to receive LP token and calc this address's maker fee
     * @notice this low-level function should be called from a contract which performs important safety checks
     */
    function mint(address to) external nonReentrant returns (uint256 liquidity) {
        (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
        uint256 balance0 = IERC20(token0).balanceOf(address(this));
        uint256 balance1 = IERC20(token1).balanceOf(address(this));
        uint256 amount0 = balance0 - _reserve0;
        uint256 amount1 = balance1 - _reserve1;

        if (to != address(0)) _calcFeeX128(to);
        if (totalSupply == 0) {
            liquidity = Math.sqrt(amount0 * amount1) - MINIMUM_LIQUIDITY;
            _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
        } else {
            uint256 rootKLast = Math.sqrt(kLast);
            liquidity = Math.min(amount0 * rootKLast / _reserve0, amount1 * rootKLast / _reserve1);
        }

        require(liquidity > 0, InsufficientLiquidityMinted());

        _mint(to, liquidity);
        _update(balance0, balance1, _reserve0, _reserve1);

        kLast = uint256(reserve0) * uint256(reserve1); // reserve0 and reserve1 are up-to-date

        emit Mint(msg.sender, to, amount0, amount1);
    }

    /**
     * @dev Burn liquidity (LP) and withdraw token0 and token1
     * @param to - Address to receive token and calc this address's maker fee
     * @notice - this low-level function should be called from a contract which performs important safety checks
     */
    function burn(address to) external nonReentrant returns (uint256 amount0, uint256 amount1) {
        (uint112 _reserve0, uint112 _reserve1,) = getReserves();
        address _token0 = token0;
        address _token1 = token1;
        uint256 balance0 = IERC20(_token0).balanceOf(address(this));
        uint256 balance1 = IERC20(_token1).balanceOf(address(this));
        uint256 liquidity = balanceOf[address(this)];

        uint256 rootKLast = Math.sqrt(kLast);
        amount0 = liquidity * balance0 / rootKLast; // using balances ensures pro-rata distribution
        amount1 = liquidity * balance1 / rootKLast; // using balances ensures pro-rata distribution

        require(amount0 > 0 && amount1 > 0, InsufficientLiquidityBurned());

        _burn(address(this), liquidity);
        _safeTransfer(_token0, to, amount0);
        _safeTransfer(_token1, to, amount1);
        balance0 = IERC20(_token0).balanceOf(address(this));
        balance1 = IERC20(_token1).balanceOf(address(this));

        _update(balance0, balance1, _reserve0, _reserve1);

        kLast = uint256(reserve0) * uint256(reserve1); // reserve0 and reserve1 are up-to-date

        emit Burn(msg.sender, amount0, amount1, to);
    }

    /**
     * @dev Swap token
     * @param amount0Out - Amount of token0 output
     * @param amount1Out - Amount of token0 output
     * @param to - Address to output
     * @param referrer - Address of rebate referrer
     * @notice - this low-level function should be called from a contract which performs important safety checks
     */
    function swap(uint256 amount0Out, uint256 amount1Out, address to, address referrer, bytes calldata data) external nonReentrant {
        require(amount0Out > 0 || amount1Out > 0, InsufficientOutputAmount());
        (uint112 _reserve0, uint112 _reserve1,) = getReserves();
        require(amount0Out < _reserve0 && amount1Out < _reserve1, InsufficientLiquidity());

        uint256 balance0;
        uint256 balance1;
        address _token0 = token0;
        address _token1 = token1;
        {
            require(to != _token0 && to != _token1, InvalidTo());

            if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out);
            if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out);
            if (data.length > 0) IOutrunAMMCallee(to).OutrunAMMCall(msg.sender, amount0Out, amount1Out, data);
            balance0 = IERC20(_token0).balanceOf(address(this));
            balance1 = IERC20(_token1).balanceOf(address(this));
        }

        uint256 amount0In;
        uint256 amount1In;
        unchecked {
            amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
            amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
        }
        require(amount0In > 0 || amount1In > 0, InsufficientInputAmount());
    
        uint256 rebateFee0;
        uint256 rebateFee1;
        uint256 protocolFee0;
        uint256 protocolFee1;
        uint256 _swapFeeRate = swapFeeRate;
        {
            uint256 balance0Adjusted = balance0 * RATIO - amount0In * _swapFeeRate;
            uint256 balance1Adjusted = balance1 * RATIO - amount1In * _swapFeeRate;
            
            require(
                balance0Adjusted * balance1Adjusted >= uint256(_reserve0) * uint256(_reserve1) * RATIO ** 2,
                ProductKLoss()
            );

            address feeTo = _feeTo();
            (balance0, rebateFee0, protocolFee0) = _transferRebateAndProtocolFee(amount0In, balance0, _token0, referrer, feeTo);
            (balance1, rebateFee1, protocolFee1) = _transferRebateAndProtocolFee(amount1In, balance1, _token1, referrer, feeTo);
        }

        _update(balance0, balance1, _reserve0, _reserve1);

        {
            uint256 k = uint256(reserve0) * uint256(reserve1);
            // The market-making revenue from LPs that are proactively burned will be distributed to others
            uint256 actualSupply = totalSupply - proactivelyBurnedAmount;
            actualSupply = actualSupply == 0 ? 1 : actualSupply;
            feeGrowthX128 += (Math.sqrt(k) - Math.sqrt(kLast)) * FixedPoint128.Q128 / actualSupply;
            kLast = k;
        }

        emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
        emit ProtocolFee(referrer, rebateFee0, rebateFee1, protocolFee0, protocolFee1);
    }

    /**
     * @dev Claim all the maker fee of msgSender
     * @notice - Claim global protocol fee simultaneously
     */
    function claimMakerFee() external override returns (uint256 amount0, uint256 amount1) {
        address msgSender = msg.sender;
        _calcFeeX128(msgSender);

        uint256 feeX128 = unClaimedFeesX128[msgSender];
        if (feeX128 == 0) return (0, 0);
        unClaimedFeesX128[msgSender] = 0;

        address _token0 = token0;
        address _token1 = token1;
        uint256 balance0 = IERC20(_token0).balanceOf(address(this));
        uint256 balance1 = IERC20(_token1).balanceOf(address(this));
        uint256 rootKLast = Math.sqrt(kLast);

        Math.mulDiv(feeX128, balance0, FixedPoint128.Q128 * rootKLast);
        amount0 = Math.mulDiv(feeX128, balance0, FixedPoint128.Q128 * rootKLast);
        amount1 = Math.mulDiv(feeX128, balance1, FixedPoint128.Q128 * rootKLast);        
        require(amount0 > 0 && amount1 > 0, InsufficientMakerFeeClaimed());

        _safeTransfer(_token0, msgSender, amount0);
        _safeTransfer(_token1, msgSender, amount1);

        (uint112 _reserve0, uint112 _reserve1,) = getReserves();
        balance0 = IERC20(_token0).balanceOf(address(this));
        balance1 = IERC20(_token1).balanceOf(address(this));
        _update(balance0, balance1, _reserve0, _reserve1);

        kLast = uint256(reserve0) * uint256(reserve1);
    }

    /**
     * @dev Force balances to match reserves
     * @param to - Address to receive excess tokens
     */
    function skim(address to) external nonReentrant {
        address _token0 = token0; // gas savings
        address _token1 = token1; // gas savings
        _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)) - reserve0);
        _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)) - reserve1);
    }

    /**
     * @dev Force reserves to match balances
     */
    function sync() external nonReentrant {
        _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
    }

    function _safeTransfer(address token, address to, uint256 value) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), TransferFailed());
    }

    /**
     * @dev update reserves and, on the first call per block, price accumulators
     */
    function _update(uint256 balance0, uint256 balance1, uint112 _reserve0, uint112 _reserve1) internal {
        require(balance0 <= type(uint112).max && balance1 <= type(uint112).max, Overflow());

        uint32 blockTimestamp;
        uint32 timeElapsed;
        unchecked {
            blockTimestamp = uint32(block.timestamp % 2 ** 32);
            timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
        }
        if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
            // * never overflows, and + overflow is desired
            unchecked {
                price0CumulativeLast += uint256(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                price1CumulativeLast += uint256(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
            }
        }
        reserve0 = uint112(balance0);
        reserve1 = uint112(balance1);
        blockTimestampLast = blockTimestamp;

        emit Sync(reserve0, reserve1);
    }

    /**
     * @dev Transfer rebate and protocol fee
     */
    function _transferRebateAndProtocolFee(
        uint256 amountIn,
        uint256 balance,
        address token,
        address referrer,
        address feeTo
    ) internal returns(uint256 balanceAfter, uint256 rebateFee, uint256 protocolFee) {
        if (amountIn == 0 || feeTo == address(0)) {
            return (balance, 0, 0);
        }

        uint256 _swapFeeRate = swapFeeRate;
        if (referrer == address(0)) {
            // swapFee * 25% as protocolFee
            rebateFee = 0;
            protocolFee = amountIn * _swapFeeRate / (RATIO * 4);
            balanceAfter = balance - protocolFee;
            _safeTransfer(token, feeTo, protocolFee);
        } else {
            // swapFee * 25% * 20% as rebateFee, swapFee * 25% * 80% as protocolFee
            rebateFee = amountIn * _swapFeeRate / (RATIO * 20);
            protocolFee = amountIn * _swapFeeRate / (RATIO * 5);
            balanceAfter = balance - rebateFee - protocolFee;
            _safeTransfer(token, referrer, rebateFee);
            _safeTransfer(token, feeTo, protocolFee);
        }
    }

    /**
     * @dev Calculate the maker fee
     */
    function _calcFeeX128(address to) internal {
        uint256 _feeGrowthX128 = feeGrowthX128;
        unchecked {
            uint256 feeAppendX128 = balanceOf[to] * (_feeGrowthX128 - feeGrowthRecordX128[to]);
            if (feeAppendX128 > 0) {
                unClaimedFeesX128[to] += feeAppendX128;
            }
        }
        feeGrowthRecordX128[to] = _feeGrowthX128;
    }

    function _feeTo() internal view returns (address) {
        return IOutrunAMMFactory(factory).feeTo();
    }

    function _beforeTokenTransfer(address from, address to, uint256) internal override {
        if (from != address(0)) _calcFeeX128(from);
        if (to != address(0)) _calcFeeX128(to);
    }
}

File 5 of 16 : IOutrunAMMFactory.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

interface IOutrunAMMFactory {
    function swapFeeRate() external view returns (uint256);

    function pairImplementation() external view returns (address);
    
    function feeTo() external view returns (address);

    function allPairs(uint256) external view returns (address pair);

    function allPairsLength() external view returns (uint256);

    function getPair(address tokenA, address tokenB) external view returns (address pair);


    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;


    error ZeroAddress();

    error PairExists();

    error IdenticalAddresses();
    

    event PairCreated(address indexed token0, address indexed token1, address pair, uint256);
}

File 6 of 16 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 7 of 16 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 8 of 16 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 9 of 16 : UQ112x112.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

// a library for handling binary fixed point numbers

// range: [0, 2**112 - 1]
// resolution: 1 / 2**112

library UQ112x112 {
    uint224 constant Q112 = 2 ** 112;

    // encode a uint112 as a UQ112x112
    function encode(uint112 y) internal pure returns (uint224 z) {
        unchecked {
            z = uint224(y) * Q112; // never overflows
        }
    }

    // divide a UQ112x112 by a uint112, returning a UQ112x112
    function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
        z = x / uint224(y);
    }
}

File 10 of 16 : FixedPoint128.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

library FixedPoint128 {
    uint256 internal constant Q128 = 0x100000000000000000000000000000000;
}

File 11 of 16 : Initializable.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

abstract contract Initializable {
    bool public initialized;

    error InvalidInitialization();

    modifier initializer() {
        require(!initialized, InvalidInitialization());

        initialized = true;
        _;
    }
}

File 12 of 16 : IOutrunAMMPair.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

interface IOutrunAMMPair {
    function MINIMUM_LIQUIDITY() external pure returns (uint256);

    function factory() external view returns (address);

    function token0() external view returns (address);

    function token1() external view returns (address);

    function price0CumulativeLast() external view returns (uint256);

    function price1CumulativeLast() external view returns (uint256);

    function kLast() external view returns (uint256);

    function feeGrowthX128() external view returns (uint256);
    
    function getPairTokens() external view returns (address _token0, address _token1);

    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);

    function previewMakerFee() external view returns (uint256 amount0, uint256 amount1);


    function initialize(address token0, address token1, uint256 swapFeeRate) external;

    function mint(address to) external returns (uint256 liquidity);

    function burn(address to) external returns (uint256 amount0, uint256 amount1);

    function swap(uint256 amount0Out, uint256 amount1Out, address to, address referrer, bytes calldata data) external;

    function skim(address to) external;

    function sync() external;

    function claimMakerFee() external returns (uint256 amount0, uint256 amount1);


    error Locked();

    error Overflow();

    error Forbidden();

    error InvalidTo();

    error ProductKLoss();

    error TransferFailed();

    error FeeRateOverflow();

    error InsufficientLiquidity();

    error InsufficientInputAmount();

    error InsufficientOutputAmount();

    error InsufficientUnclaimedFee();

    error InsufficientLiquidityMinted();

    error InsufficientLiquidityBurned();

    error InsufficientMakerFeeClaimed();


    event Mint(address indexed sender, address indexed to, uint256 amount0, uint256 amount1);

    event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to);

    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );

    event ProtocolFee(
        address indexed referrer,
        uint256 rebateFee0,
        uint256 rebateFee1,
        uint256 protocolFee0,
        uint256 protocolFee1
    );

    event Sync(uint112 reserve0, uint112 reserve1);
}

File 13 of 16 : ReentrancyGuard.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

/**
 * @dev Outrun's ReentrancyGuard implementation, support transient variable. Modified from @openzeppelin implementation
 */
abstract contract ReentrancyGuard {
    bool transient locked;

    error ReentrancyGuardReentrantCall();

    modifier nonReentrant() {
        require(!locked, ReentrancyGuardReentrantCall());
        locked = true;
        _;
        locked = false;
    }
}

File 14 of 16 : IOutrunAMMCallee.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

interface IOutrunAMMCallee {
    function OutrunAMMCall(address sender, uint256 amount0, uint256 amount1, bytes calldata data) external;
}

File 15 of 16 : OutrunAMMERC20.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

import {IOutrunAMMERC20} from "./interfaces/IOutrunAMMERC20.sol";

/**
 * @dev OutrunAMM's ERC20 implementation, modified from @solmate implementation
 */
abstract contract OutrunAMMERC20 is IOutrunAMMERC20 {
    string public constant name = "Outrun AMM";

    string public constant symbol = "OUT-AMM";

    uint8 public constant decimals = 18;

    uint256 public totalSupply;

    uint256 public proactivelyBurnedAmount;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    constructor() {}

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(msg.sender, to, amount);

        if (to == address(0)) proactivelyBurnedAmount += amount;

        balanceOf[msg.sender] -= amount;

        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        _beforeTokenTransfer(from, to, amount);

        uint256 allowed = allowance[from][msg.sender];

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        if (to == address(0)) proactivelyBurnedAmount += amount;

        balanceOf[from] -= amount;

        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    function _mint(address to, uint256 amount) internal virtual {
        if (to == address(0)) proactivelyBurnedAmount += amount;
        
        totalSupply += amount;

        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }

    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

File 16 of 16 : IOutrunAMMERC20.sol
//SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;

interface IOutrunAMMERC20 {
    function name() external pure returns (string memory);

    function symbol() external pure returns (string memory);

    function decimals() external pure returns (uint8);

    function totalSupply() external view returns (uint256);

    function balanceOf(address owner) external view returns (uint256);

    function allowance(address owner, address spender) external view returns (uint256);


    function approve(address spender, uint256 value) external returns (bool);
    
    function transfer(address to, uint value) external returns (bool);

    function transferFrom(address from, address to, uint value) external returns (bool);


    event Transfer(address indexed from, address indexed to, uint256 value);
    
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/solmate/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 100000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"owner_","type":"address"},{"internalType":"address","name":"pairImplementation_","type":"address"},{"internalType":"uint256","name":"swapFeeRate_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ERC1167FailedCreateClone","type":"error"},{"inputs":[],"name":"IdenticalAddresses","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PairExists","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token0","type":"address"},{"indexed":true,"internalType":"address","name":"token1","type":"address"},{"indexed":false,"internalType":"address","name":"pair","type":"address"},{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"PairCreated","type":"event"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allPairs","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allPairsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"}],"name":"createPair","outputs":[{"internalType":"address","name":"pair","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"feeTo","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"getPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pairImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeTo","type":"address"}],"name":"setFeeTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapFeeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60c0346100f757601f610c2138819003918201601f19168301916001600160401b038311848410176100fb578084926060946040528339810103126100f7576100478161010f565b9060406100566020830161010f565b9101516001600160a01b039092169182156100e4575f80546001600160a01b031981168517825560405194916001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a360805260a052610afd9081610124823960805181818161039101526108a5015260a05181818161043801526107770152f35b631e4fbdf760e01b5f525f60045260245ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036100f75756fe6080806040526004361015610012575f80fd5b5f905f3560e01c908163017e7e5814610934575080631e3dd18b146108c85780633a04801d14610870578063574f2ba314610835578063715018a61461079b57806371f3c5961461072d5780638da5cb5b146106dd578063c9c6539614610298578063e6a4390514610209578063f2fde38b1461011b5763f46901ed14610097575f80fd5b346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6100e36109c7565b6100eb610a7b565b167fffffffffffffffffffffffff0000000000000000000000000000000000000000600154161760015580f35b80fd5b50346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6101686109c7565b610170610a7b565b1680156101dd5773ffffffffffffffffffffffffffffffffffffffff8254827fffffffffffffffffffffffff00000000000000000000000000000000000000008216178455167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b6024827f1e4fbdf700000000000000000000000000000000000000000000000000000000815280600452fd5b50346101185760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff60406102586109c7565b92826102626109ea565b9416815260036020522091165f52602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b50346106345760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576102d06109c7565b6102d86109ea565b9073ffffffffffffffffffffffffffffffffffffffff821673ffffffffffffffffffffffffffffffffffffffff82168181146106b55710156106b057905b73ffffffffffffffffffffffffffffffffffffffff8216801561068857805f52600360205260405f2073ffffffffffffffffffffffffffffffffffffffff83165f5260205273ffffffffffffffffffffffffffffffffffffffff60405f2054166106605773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000936040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000602082019260601b1682527fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008386169560601b16603482015285604882015260488152610423606882610a0d565b5190206e5af43d82803e903d91602b57fd5bf37f0000000000000000000000000000000000000000000000000000000000000000763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff8260881c16175f5260781b17602052603760095ff51692831561063857833b1561063457604051907f1794bb3c00000000000000000000000000000000000000000000000000000000825282600483015283602483015260448201525f8160648183885af1801561062957610614575b50808452600360205260408420825f5260205260405f20837fffffffffffffffffffffffff0000000000000000000000000000000000000000825416179055818452600360205260408420815f5260205260405f20837fffffffffffffffffffffffff000000000000000000000000000000000000000082541617905560025493680100000000000000008510156105e7575061058884600160209601600255610982565b81549060031b9073ffffffffffffffffffffffffffffffffffffffff86831b921b19161790557f0d3648bd0f6ba80134a33ba9275ac585d9d315f0ad8355cddefde31afa28d0e9604060025481519086825287820152a3604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526041600452fd5b6106219194505f90610a0d565b5f925f6104e3565b6040513d5f823e3d90fd5b5f80fd5b7fc2f868f4000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f3d77e891000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b610316565b7fbd969eb0000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602073ffffffffffffffffffffffffffffffffffffffff5f5416604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576107d1610a7b565b5f73ffffffffffffffffffffffffffffffffffffffff81547fffffffffffffffffffffffff000000000000000000000000000000000000000081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576020600254604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b346106345760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576004356002548110156106345773ffffffffffffffffffffffffffffffffffffffff610924602092610982565b90549060031b1c16604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760209073ffffffffffffffffffffffffffffffffffffffff600154168152f35b60025481101561099a5760025f5260205f2001905f90565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610a4e57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff5f54163303610a9b57565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffdfea2646970667358221220052b8b7015c2e4046189724b96d7e178bcda4904e5f33fdde53e6b00ac6c178164736f6c634300081c0033000000000000000000000000cae21365145c467f8957607ae364fb29ee07320900000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f000000000000000000000000000000000000000000000000000000000000001e

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f905f3560e01c908163017e7e5814610934575080631e3dd18b146108c85780633a04801d14610870578063574f2ba314610835578063715018a61461079b57806371f3c5961461072d5780638da5cb5b146106dd578063c9c6539614610298578063e6a4390514610209578063f2fde38b1461011b5763f46901ed14610097575f80fd5b346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6100e36109c7565b6100eb610a7b565b167fffffffffffffffffffffffff0000000000000000000000000000000000000000600154161760015580f35b80fd5b50346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6101686109c7565b610170610a7b565b1680156101dd5773ffffffffffffffffffffffffffffffffffffffff8254827fffffffffffffffffffffffff00000000000000000000000000000000000000008216178455167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b6024827f1e4fbdf700000000000000000000000000000000000000000000000000000000815280600452fd5b50346101185760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff60406102586109c7565b92826102626109ea565b9416815260036020522091165f52602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b50346106345760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576102d06109c7565b6102d86109ea565b9073ffffffffffffffffffffffffffffffffffffffff821673ffffffffffffffffffffffffffffffffffffffff82168181146106b55710156106b057905b73ffffffffffffffffffffffffffffffffffffffff8216801561068857805f52600360205260405f2073ffffffffffffffffffffffffffffffffffffffff83165f5260205273ffffffffffffffffffffffffffffffffffffffff60405f2054166106605773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000001e936040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000602082019260601b1682527fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008386169560601b16603482015285604882015260488152610423606882610a0d565b5190206e5af43d82803e903d91602b57fd5bf37f00000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff8260881c16175f5260781b17602052603760095ff51692831561063857833b1561063457604051907f1794bb3c00000000000000000000000000000000000000000000000000000000825282600483015283602483015260448201525f8160648183885af1801561062957610614575b50808452600360205260408420825f5260205260405f20837fffffffffffffffffffffffff0000000000000000000000000000000000000000825416179055818452600360205260408420815f5260205260405f20837fffffffffffffffffffffffff000000000000000000000000000000000000000082541617905560025493680100000000000000008510156105e7575061058884600160209601600255610982565b81549060031b9073ffffffffffffffffffffffffffffffffffffffff86831b921b19161790557f0d3648bd0f6ba80134a33ba9275ac585d9d315f0ad8355cddefde31afa28d0e9604060025481519086825287820152a3604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526041600452fd5b6106219194505f90610a0d565b5f925f6104e3565b6040513d5f823e3d90fd5b5f80fd5b7fc2f868f4000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f3d77e891000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b610316565b7fbd969eb0000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602073ffffffffffffffffffffffffffffffffffffffff5f5416604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602060405173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f168152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576107d1610a7b565b5f73ffffffffffffffffffffffffffffffffffffffff81547fffffffffffffffffffffffff000000000000000000000000000000000000000081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576020600254604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760206040517f000000000000000000000000000000000000000000000000000000000000001e8152f35b346106345760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576004356002548110156106345773ffffffffffffffffffffffffffffffffffffffff610924602092610982565b90549060031b1c16604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760209073ffffffffffffffffffffffffffffffffffffffff600154168152f35b60025481101561099a5760025f5260205f2001905f90565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610a4e57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff5f54163303610a9b57565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffdfea2646970667358221220052b8b7015c2e4046189724b96d7e178bcda4904e5f33fdde53e6b00ac6c178164736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000cae21365145c467f8957607ae364fb29ee07320900000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f000000000000000000000000000000000000000000000000000000000000001e

-----Decoded View---------------
Arg [0] : owner_ (address): 0xcae21365145C467F8957607aE364fb29Ee073209
Arg [1] : pairImplementation_ (address): 0x49178128717080305d6506eb24E71e0CEA68bF8f
Arg [2] : swapFeeRate_ (uint256): 30

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000cae21365145c467f8957607ae364fb29ee073209
Arg [1] : 00000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f
Arg [2] : 000000000000000000000000000000000000000000000000000000000000001e


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.