Source Code
Overview
S Balance
More Info
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Set Fee To | 24703248 | 4 days ago | IN | 0 S | 0.00004787 |
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
24703248 | 4 days ago | Contract Creation | 0 S |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
OutrunAMMFactory
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 100000 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol"; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import {IOutrunAMMPair, OutrunAMMPair} from "./OutrunAMMPair.sol"; import {IOutrunAMMFactory} from "./interfaces/IOutrunAMMFactory.sol"; contract OutrunAMMFactory is IOutrunAMMFactory, Ownable { uint256 public immutable swapFeeRate; address public immutable pairImplementation; address public feeTo; address[] public allPairs; mapping(address => mapping(address => address)) public getPair; constructor( address owner_, address pairImplementation_, uint256 swapFeeRate_ ) Ownable(owner_) { swapFeeRate = swapFeeRate_; pairImplementation = pairImplementation_; } function allPairsLength() external view returns (uint256) { return allPairs.length; } function createPair(address tokenA, address tokenB) external returns (address pair) { require(tokenA != tokenB, IdenticalAddresses()); (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); require(token0 != address(0), ZeroAddress()); require(getPair[token0][token1] == address(0), PairExists()); // single check is sufficient bytes32 salt = keccak256(abi.encodePacked(token0, token1, swapFeeRate)); pair = Clones.cloneDeterministic(pairImplementation, salt); IOutrunAMMPair(pair).initialize(token0, token1, swapFeeRate); getPair[token0][token1] = pair; getPair[token1][token0] = pair; // populate mapping in the reverse direction allPairs.push(pair); emit PairCreated(token0, token1, pair, allPairs.length); } function setFeeTo(address _feeTo) external onlyOwner { feeTo = _feeTo; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol) pragma solidity ^0.8.20; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { /** * @dev A clone instance deployment failed. */ error ERC1167FailedCreateClone(); /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(0, 0x09, 0x37) } if (instance == address(0)) { revert ERC1167FailedCreateClone(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(0, 0x09, 0x37, salt) } if (instance == address(0)) { revert ERC1167FailedCreateClone(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := keccak256(add(ptr, 0x43), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {UQ112x112} from "../libraries/UQ112x112.sol"; import {FixedPoint128} from "../libraries/FixedPoint128.sol"; import {Initializable} from "../libraries/Initializable.sol"; import {IOutrunAMMPair} from "./interfaces/IOutrunAMMPair.sol"; import {ReentrancyGuard} from "../libraries/ReentrancyGuard.sol"; import {IOutrunAMMCallee} from "./interfaces/IOutrunAMMCallee.sol"; import {IOutrunAMMFactory} from "./interfaces/IOutrunAMMFactory.sol"; import {IOutrunAMMERC20, OutrunAMMERC20} from "./OutrunAMMERC20.sol"; contract OutrunAMMPair is IOutrunAMMPair, OutrunAMMERC20, ReentrancyGuard, Initializable { using UQ112x112 for uint224; bytes4 private constant SELECTOR = bytes4(keccak256(bytes("transfer(address,uint256)"))); uint256 public constant RATIO = 10000; uint256 public constant MINIMUM_LIQUIDITY = 1000; address public factory; address public token0; address public token1; uint256 public swapFeeRate; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint256 public price0CumulativeLast; uint256 public price1CumulativeLast; uint256 public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint256 public feeGrowthX128; // accumulate maker fee per LP X128 mapping(address account => uint256) public feeGrowthRecordX128; // record the feeGrowthX128 when calc maker's append fee mapping(address account => uint256) public unClaimedFeesX128; function getPairTokens() external view override returns (address _token0, address _token1) { _token0 = token0; _token1 = token1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } /** * @dev Preview unclaimed maker fee */ function previewMakerFee() external view override returns (uint256 amount0, uint256 amount1) { address msgSender = msg.sender; uint256 feeAppendX128 = balanceOf[msgSender] * (feeGrowthX128 - feeGrowthRecordX128[msgSender]); uint256 unClaimedFeeX128 = unClaimedFeesX128[msgSender]; if (feeAppendX128 > 0) unClaimedFeeX128 += feeAppendX128; if (unClaimedFeeX128 == 0) return (0, 0); uint256 rootKLast = Math.sqrt(kLast); amount0 = Math.mulDiv(unClaimedFeeX128, IERC20(token0).balanceOf(address(this)), FixedPoint128.Q128 * rootKLast); amount1 = Math.mulDiv(unClaimedFeeX128, IERC20(token1).balanceOf(address(this)), FixedPoint128.Q128 * rootKLast); } // called once by the factory at time of deployment function initialize( address _token0, address _token1, uint256 _swapFeeRate ) external initializer { require(_swapFeeRate < RATIO, FeeRateOverflow()); token0 = _token0; token1 = _token1; swapFeeRate = _swapFeeRate; factory = msg.sender; } /** * @dev Mint liquidity (LP) * @param to - address to receive LP token and calc this address's maker fee * @notice this low-level function should be called from a contract which performs important safety checks */ function mint(address to) external nonReentrant returns (uint256 liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint256 balance0 = IERC20(token0).balanceOf(address(this)); uint256 balance1 = IERC20(token1).balanceOf(address(this)); uint256 amount0 = balance0 - _reserve0; uint256 amount1 = balance1 - _reserve1; if (to != address(0)) _calcFeeX128(to); if (totalSupply == 0) { liquidity = Math.sqrt(amount0 * amount1) - MINIMUM_LIQUIDITY; _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { uint256 rootKLast = Math.sqrt(kLast); liquidity = Math.min(amount0 * rootKLast / _reserve0, amount1 * rootKLast / _reserve1); } require(liquidity > 0, InsufficientLiquidityMinted()); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); kLast = uint256(reserve0) * uint256(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, to, amount0, amount1); } /** * @dev Burn liquidity (LP) and withdraw token0 and token1 * @param to - Address to receive token and calc this address's maker fee * @notice - this low-level function should be called from a contract which performs important safety checks */ function burn(address to) external nonReentrant returns (uint256 amount0, uint256 amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); address _token0 = token0; address _token1 = token1; uint256 balance0 = IERC20(_token0).balanceOf(address(this)); uint256 balance1 = IERC20(_token1).balanceOf(address(this)); uint256 liquidity = balanceOf[address(this)]; uint256 rootKLast = Math.sqrt(kLast); amount0 = liquidity * balance0 / rootKLast; // using balances ensures pro-rata distribution amount1 = liquidity * balance1 / rootKLast; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, InsufficientLiquidityBurned()); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); kLast = uint256(reserve0) * uint256(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } /** * @dev Swap token * @param amount0Out - Amount of token0 output * @param amount1Out - Amount of token0 output * @param to - Address to output * @param referrer - Address of rebate referrer * @notice - this low-level function should be called from a contract which performs important safety checks */ function swap(uint256 amount0Out, uint256 amount1Out, address to, address referrer, bytes calldata data) external nonReentrant { require(amount0Out > 0 || amount1Out > 0, InsufficientOutputAmount()); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); require(amount0Out < _reserve0 && amount1Out < _reserve1, InsufficientLiquidity()); uint256 balance0; uint256 balance1; address _token0 = token0; address _token1 = token1; { require(to != _token0 && to != _token1, InvalidTo()); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); if (data.length > 0) IOutrunAMMCallee(to).OutrunAMMCall(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint256 amount0In; uint256 amount1In; unchecked { amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; } require(amount0In > 0 || amount1In > 0, InsufficientInputAmount()); uint256 rebateFee0; uint256 rebateFee1; uint256 protocolFee0; uint256 protocolFee1; uint256 _swapFeeRate = swapFeeRate; { uint256 balance0Adjusted = balance0 * RATIO - amount0In * _swapFeeRate; uint256 balance1Adjusted = balance1 * RATIO - amount1In * _swapFeeRate; require( balance0Adjusted * balance1Adjusted >= uint256(_reserve0) * uint256(_reserve1) * RATIO ** 2, ProductKLoss() ); address feeTo = _feeTo(); (balance0, rebateFee0, protocolFee0) = _transferRebateAndProtocolFee(amount0In, balance0, _token0, referrer, feeTo); (balance1, rebateFee1, protocolFee1) = _transferRebateAndProtocolFee(amount1In, balance1, _token1, referrer, feeTo); } _update(balance0, balance1, _reserve0, _reserve1); { uint256 k = uint256(reserve0) * uint256(reserve1); // The market-making revenue from LPs that are proactively burned will be distributed to others uint256 actualSupply = totalSupply - proactivelyBurnedAmount; actualSupply = actualSupply == 0 ? 1 : actualSupply; feeGrowthX128 += (Math.sqrt(k) - Math.sqrt(kLast)) * FixedPoint128.Q128 / actualSupply; kLast = k; } emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); emit ProtocolFee(referrer, rebateFee0, rebateFee1, protocolFee0, protocolFee1); } /** * @dev Claim all the maker fee of msgSender * @notice - Claim global protocol fee simultaneously */ function claimMakerFee() external override returns (uint256 amount0, uint256 amount1) { address msgSender = msg.sender; _calcFeeX128(msgSender); uint256 feeX128 = unClaimedFeesX128[msgSender]; if (feeX128 == 0) return (0, 0); unClaimedFeesX128[msgSender] = 0; address _token0 = token0; address _token1 = token1; uint256 balance0 = IERC20(_token0).balanceOf(address(this)); uint256 balance1 = IERC20(_token1).balanceOf(address(this)); uint256 rootKLast = Math.sqrt(kLast); Math.mulDiv(feeX128, balance0, FixedPoint128.Q128 * rootKLast); amount0 = Math.mulDiv(feeX128, balance0, FixedPoint128.Q128 * rootKLast); amount1 = Math.mulDiv(feeX128, balance1, FixedPoint128.Q128 * rootKLast); require(amount0 > 0 && amount1 > 0, InsufficientMakerFeeClaimed()); _safeTransfer(_token0, msgSender, amount0); _safeTransfer(_token1, msgSender, amount1); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); kLast = uint256(reserve0) * uint256(reserve1); } /** * @dev Force balances to match reserves * @param to - Address to receive excess tokens */ function skim(address to) external nonReentrant { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)) - reserve0); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)) - reserve1); } /** * @dev Force reserves to match balances */ function sync() external nonReentrant { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } function _safeTransfer(address token, address to, uint256 value) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), TransferFailed()); } /** * @dev update reserves and, on the first call per block, price accumulators */ function _update(uint256 balance0, uint256 balance1, uint112 _reserve0, uint112 _reserve1) internal { require(balance0 <= type(uint112).max && balance1 <= type(uint112).max, Overflow()); uint32 blockTimestamp; uint32 timeElapsed; unchecked { blockTimestamp = uint32(block.timestamp % 2 ** 32); timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired } if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired unchecked { price0CumulativeLast += uint256(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint256(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } /** * @dev Transfer rebate and protocol fee */ function _transferRebateAndProtocolFee( uint256 amountIn, uint256 balance, address token, address referrer, address feeTo ) internal returns(uint256 balanceAfter, uint256 rebateFee, uint256 protocolFee) { if (amountIn == 0 || feeTo == address(0)) { return (balance, 0, 0); } uint256 _swapFeeRate = swapFeeRate; if (referrer == address(0)) { // swapFee * 25% as protocolFee rebateFee = 0; protocolFee = amountIn * _swapFeeRate / (RATIO * 4); balanceAfter = balance - protocolFee; _safeTransfer(token, feeTo, protocolFee); } else { // swapFee * 25% * 20% as rebateFee, swapFee * 25% * 80% as protocolFee rebateFee = amountIn * _swapFeeRate / (RATIO * 20); protocolFee = amountIn * _swapFeeRate / (RATIO * 5); balanceAfter = balance - rebateFee - protocolFee; _safeTransfer(token, referrer, rebateFee); _safeTransfer(token, feeTo, protocolFee); } } /** * @dev Calculate the maker fee */ function _calcFeeX128(address to) internal { uint256 _feeGrowthX128 = feeGrowthX128; unchecked { uint256 feeAppendX128 = balanceOf[to] * (_feeGrowthX128 - feeGrowthRecordX128[to]); if (feeAppendX128 > 0) { unClaimedFeesX128[to] += feeAppendX128; } } feeGrowthRecordX128[to] = _feeGrowthX128; } function _feeTo() internal view returns (address) { return IOutrunAMMFactory(factory).feeTo(); } function _beforeTokenTransfer(address from, address to, uint256) internal override { if (from != address(0)) _calcFeeX128(from); if (to != address(0)) _calcFeeX128(to); } }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; interface IOutrunAMMFactory { function swapFeeRate() external view returns (uint256); function pairImplementation() external view returns (address); function feeTo() external view returns (address); function allPairs(uint256) external view returns (address pair); function allPairsLength() external view returns (uint256); function getPair(address tokenA, address tokenB) external view returns (address pair); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; error ZeroAddress(); error PairExists(); error IdenticalAddresses(); event PairCreated(address indexed token0, address indexed token1, address pair, uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; // a library for handling binary fixed point numbers // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2 ** 112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { unchecked { z = uint224(y) * Q112; // never overflows } } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; library FixedPoint128 { uint256 internal constant Q128 = 0x100000000000000000000000000000000; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; abstract contract Initializable { bool public initialized; error InvalidInitialization(); modifier initializer() { require(!initialized, InvalidInitialization()); initialized = true; _; } }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; interface IOutrunAMMPair { function MINIMUM_LIQUIDITY() external pure returns (uint256); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function price0CumulativeLast() external view returns (uint256); function price1CumulativeLast() external view returns (uint256); function kLast() external view returns (uint256); function feeGrowthX128() external view returns (uint256); function getPairTokens() external view returns (address _token0, address _token1); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function previewMakerFee() external view returns (uint256 amount0, uint256 amount1); function initialize(address token0, address token1, uint256 swapFeeRate) external; function mint(address to) external returns (uint256 liquidity); function burn(address to) external returns (uint256 amount0, uint256 amount1); function swap(uint256 amount0Out, uint256 amount1Out, address to, address referrer, bytes calldata data) external; function skim(address to) external; function sync() external; function claimMakerFee() external returns (uint256 amount0, uint256 amount1); error Locked(); error Overflow(); error Forbidden(); error InvalidTo(); error ProductKLoss(); error TransferFailed(); error FeeRateOverflow(); error InsufficientLiquidity(); error InsufficientInputAmount(); error InsufficientOutputAmount(); error InsufficientUnclaimedFee(); error InsufficientLiquidityMinted(); error InsufficientLiquidityBurned(); error InsufficientMakerFeeClaimed(); event Mint(address indexed sender, address indexed to, uint256 amount0, uint256 amount1); event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to); event Swap( address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to ); event ProtocolFee( address indexed referrer, uint256 rebateFee0, uint256 rebateFee1, uint256 protocolFee0, uint256 protocolFee1 ); event Sync(uint112 reserve0, uint112 reserve1); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; /** * @dev Outrun's ReentrancyGuard implementation, support transient variable. Modified from @openzeppelin implementation */ abstract contract ReentrancyGuard { bool transient locked; error ReentrancyGuardReentrantCall(); modifier nonReentrant() { require(!locked, ReentrancyGuardReentrantCall()); locked = true; _; locked = false; } }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; interface IOutrunAMMCallee { function OutrunAMMCall(address sender, uint256 amount0, uint256 amount1, bytes calldata data) external; }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; import {IOutrunAMMERC20} from "./interfaces/IOutrunAMMERC20.sol"; /** * @dev OutrunAMM's ERC20 implementation, modified from @solmate implementation */ abstract contract OutrunAMMERC20 is IOutrunAMMERC20 { string public constant name = "Outrun AMM"; string public constant symbol = "OUT-AMM"; uint8 public constant decimals = 18; uint256 public totalSupply; uint256 public proactivelyBurnedAmount; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; constructor() {} function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { _beforeTokenTransfer(msg.sender, to, amount); if (to == address(0)) proactivelyBurnedAmount += amount; balanceOf[msg.sender] -= amount; unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { _beforeTokenTransfer(from, to, amount); uint256 allowed = allowance[from][msg.sender]; if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; if (to == address(0)) proactivelyBurnedAmount += amount; balanceOf[from] -= amount; unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } function _mint(address to, uint256 amount) internal virtual { if (to == address(0)) proactivelyBurnedAmount += amount; totalSupply += amount; unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
//SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.28; interface IOutrunAMMERC20 { function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/solmate/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "solmate/=lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 100000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": true, "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"address","name":"owner_","type":"address"},{"internalType":"address","name":"pairImplementation_","type":"address"},{"internalType":"uint256","name":"swapFeeRate_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ERC1167FailedCreateClone","type":"error"},{"inputs":[],"name":"IdenticalAddresses","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PairExists","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token0","type":"address"},{"indexed":true,"internalType":"address","name":"token1","type":"address"},{"indexed":false,"internalType":"address","name":"pair","type":"address"},{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"PairCreated","type":"event"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allPairs","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allPairsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"}],"name":"createPair","outputs":[{"internalType":"address","name":"pair","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"feeTo","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"getPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pairImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeTo","type":"address"}],"name":"setFeeTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapFeeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60c0346100f757601f610c2138819003918201601f19168301916001600160401b038311848410176100fb578084926060946040528339810103126100f7576100478161010f565b9060406100566020830161010f565b9101516001600160a01b039092169182156100e4575f80546001600160a01b031981168517825560405194916001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a360805260a052610afd9081610124823960805181818161039101526108a5015260a05181818161043801526107770152f35b631e4fbdf760e01b5f525f60045260245ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036100f75756fe6080806040526004361015610012575f80fd5b5f905f3560e01c908163017e7e5814610934575080631e3dd18b146108c85780633a04801d14610870578063574f2ba314610835578063715018a61461079b57806371f3c5961461072d5780638da5cb5b146106dd578063c9c6539614610298578063e6a4390514610209578063f2fde38b1461011b5763f46901ed14610097575f80fd5b346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6100e36109c7565b6100eb610a7b565b167fffffffffffffffffffffffff0000000000000000000000000000000000000000600154161760015580f35b80fd5b50346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6101686109c7565b610170610a7b565b1680156101dd5773ffffffffffffffffffffffffffffffffffffffff8254827fffffffffffffffffffffffff00000000000000000000000000000000000000008216178455167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b6024827f1e4fbdf700000000000000000000000000000000000000000000000000000000815280600452fd5b50346101185760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff60406102586109c7565b92826102626109ea565b9416815260036020522091165f52602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b50346106345760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576102d06109c7565b6102d86109ea565b9073ffffffffffffffffffffffffffffffffffffffff821673ffffffffffffffffffffffffffffffffffffffff82168181146106b55710156106b057905b73ffffffffffffffffffffffffffffffffffffffff8216801561068857805f52600360205260405f2073ffffffffffffffffffffffffffffffffffffffff83165f5260205273ffffffffffffffffffffffffffffffffffffffff60405f2054166106605773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000936040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000602082019260601b1682527fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008386169560601b16603482015285604882015260488152610423606882610a0d565b5190206e5af43d82803e903d91602b57fd5bf37f0000000000000000000000000000000000000000000000000000000000000000763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff8260881c16175f5260781b17602052603760095ff51692831561063857833b1561063457604051907f1794bb3c00000000000000000000000000000000000000000000000000000000825282600483015283602483015260448201525f8160648183885af1801561062957610614575b50808452600360205260408420825f5260205260405f20837fffffffffffffffffffffffff0000000000000000000000000000000000000000825416179055818452600360205260408420815f5260205260405f20837fffffffffffffffffffffffff000000000000000000000000000000000000000082541617905560025493680100000000000000008510156105e7575061058884600160209601600255610982565b81549060031b9073ffffffffffffffffffffffffffffffffffffffff86831b921b19161790557f0d3648bd0f6ba80134a33ba9275ac585d9d315f0ad8355cddefde31afa28d0e9604060025481519086825287820152a3604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526041600452fd5b6106219194505f90610a0d565b5f925f6104e3565b6040513d5f823e3d90fd5b5f80fd5b7fc2f868f4000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f3d77e891000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b610316565b7fbd969eb0000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602073ffffffffffffffffffffffffffffffffffffffff5f5416604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576107d1610a7b565b5f73ffffffffffffffffffffffffffffffffffffffff81547fffffffffffffffffffffffff000000000000000000000000000000000000000081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576020600254604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b346106345760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576004356002548110156106345773ffffffffffffffffffffffffffffffffffffffff610924602092610982565b90549060031b1c16604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760209073ffffffffffffffffffffffffffffffffffffffff600154168152f35b60025481101561099a5760025f5260205f2001905f90565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610a4e57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff5f54163303610a9b57565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffdfea2646970667358221220052b8b7015c2e4046189724b96d7e178bcda4904e5f33fdde53e6b00ac6c178164736f6c634300081c0033000000000000000000000000cae21365145c467f8957607ae364fb29ee07320900000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f000000000000000000000000000000000000000000000000000000000000001e
Deployed Bytecode
0x6080806040526004361015610012575f80fd5b5f905f3560e01c908163017e7e5814610934575080631e3dd18b146108c85780633a04801d14610870578063574f2ba314610835578063715018a61461079b57806371f3c5961461072d5780638da5cb5b146106dd578063c9c6539614610298578063e6a4390514610209578063f2fde38b1461011b5763f46901ed14610097575f80fd5b346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6100e36109c7565b6100eb610a7b565b167fffffffffffffffffffffffff0000000000000000000000000000000000000000600154161760015580f35b80fd5b50346101185760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff6101686109c7565b610170610a7b565b1680156101dd5773ffffffffffffffffffffffffffffffffffffffff8254827fffffffffffffffffffffffff00000000000000000000000000000000000000008216178455167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b6024827f1e4fbdf700000000000000000000000000000000000000000000000000000000815280600452fd5b50346101185760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101185773ffffffffffffffffffffffffffffffffffffffff60406102586109c7565b92826102626109ea565b9416815260036020522091165f52602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b50346106345760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576102d06109c7565b6102d86109ea565b9073ffffffffffffffffffffffffffffffffffffffff821673ffffffffffffffffffffffffffffffffffffffff82168181146106b55710156106b057905b73ffffffffffffffffffffffffffffffffffffffff8216801561068857805f52600360205260405f2073ffffffffffffffffffffffffffffffffffffffff83165f5260205273ffffffffffffffffffffffffffffffffffffffff60405f2054166106605773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000001e936040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000602082019260601b1682527fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008386169560601b16603482015285604882015260488152610423606882610a0d565b5190206e5af43d82803e903d91602b57fd5bf37f00000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff8260881c16175f5260781b17602052603760095ff51692831561063857833b1561063457604051907f1794bb3c00000000000000000000000000000000000000000000000000000000825282600483015283602483015260448201525f8160648183885af1801561062957610614575b50808452600360205260408420825f5260205260405f20837fffffffffffffffffffffffff0000000000000000000000000000000000000000825416179055818452600360205260408420815f5260205260405f20837fffffffffffffffffffffffff000000000000000000000000000000000000000082541617905560025493680100000000000000008510156105e7575061058884600160209601600255610982565b81549060031b9073ffffffffffffffffffffffffffffffffffffffff86831b921b19161790557f0d3648bd0f6ba80134a33ba9275ac585d9d315f0ad8355cddefde31afa28d0e9604060025481519086825287820152a3604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526041600452fd5b6106219194505f90610a0d565b5f925f6104e3565b6040513d5f823e3d90fd5b5f80fd5b7fc2f868f4000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f3d77e891000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b610316565b7fbd969eb0000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602073ffffffffffffffffffffffffffffffffffffffff5f5416604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063457602060405173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f168152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576107d1610a7b565b5f73ffffffffffffffffffffffffffffffffffffffff81547fffffffffffffffffffffffff000000000000000000000000000000000000000081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576020600254604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760206040517f000000000000000000000000000000000000000000000000000000000000001e8152f35b346106345760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610634576004356002548110156106345773ffffffffffffffffffffffffffffffffffffffff610924602092610982565b90549060031b1c16604051908152f35b34610634575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126106345760209073ffffffffffffffffffffffffffffffffffffffff600154168152f35b60025481101561099a5760025f5260205f2001905f90565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361063457565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610a4e57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff5f54163303610a9b57565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffdfea2646970667358221220052b8b7015c2e4046189724b96d7e178bcda4904e5f33fdde53e6b00ac6c178164736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000cae21365145c467f8957607ae364fb29ee07320900000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f000000000000000000000000000000000000000000000000000000000000001e
-----Decoded View---------------
Arg [0] : owner_ (address): 0xcae21365145C467F8957607aE364fb29Ee073209
Arg [1] : pairImplementation_ (address): 0x49178128717080305d6506eb24E71e0CEA68bF8f
Arg [2] : swapFeeRate_ (uint256): 30
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000cae21365145c467f8957607ae364fb29ee073209
Arg [1] : 00000000000000000000000049178128717080305d6506eb24e71e0cea68bf8f
Arg [2] : 000000000000000000000000000000000000000000000000000000000000001e
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.