Sonic Blaze Testnet

Contract

0x92b69dE82000Ea114291F6c267b0b58Fb4D33f07

Overview

S Balance

Sonic Blaze LogoSonic Blaze LogoSonic Blaze Logo0 S

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
GaugeFactory

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 100 runs

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 11 : GaugeFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import {IGauge} from "./../interfaces/IGauge.sol";
import {Gauge} from "./../Gauge.sol";
contract GaugeFactory {
    address public lastGauge;

    function createGauge(address _pool) external returns (address) {
        lastGauge = address(new Gauge(_pool, msg.sender));

        return lastGauge;
    }
}

File 2 of 11 : IGauge.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IGauge {
    error ZERO_AMOUNT();

    error CANT_NOTIFY_STAKE();

    error REWARD_TOO_HIGH();

    error NOT_GREATER_THAN_REMAINING(uint256 amount, uint256 remaining);

    error TOKEN_ERROR(address token);

    error NOT_WHITELISTED();

    error NOT_AUTHORIZED();

    event Deposit(address indexed from, uint256 amount);

    event Withdraw(address indexed from, uint256 amount);

    event NotifyReward(
        address indexed from,
        address indexed reward,
        uint256 amount
    );

    event ClaimRewards(
        address indexed from,
        address indexed reward,
        uint256 amount
    );

    event RewardWhitelisted(address indexed reward, bool whitelisted);

    /// @notice returns an array with all the addresses of the rewards
    /// @return _rewards array of addresses for rewards
    function rewardsList() external view returns (address[] memory _rewards);

    /// @notice number of different rewards the gauge has facilitated that are 'active'
    /// @return _length the number of individual rewards
    function rewardsListLength() external view returns (uint256 _length);

    /// @notice returns the last time the reward was modified or periodFinish if the reward has ended
    /// @param token address of the token
    /// @return ltra last time reward applicable
    function lastTimeRewardApplicable(
        address token
    ) external view returns (uint256 ltra);

    /// @notice displays the data struct of rewards for a token
    /// @param token the address of the token
    /// @return data rewards struct
    function rewardData(
        address token
    ) external view returns (Reward memory data);

    /// @notice calculates the amount of tokens earned for an address
    /// @param token address of the token to check
    /// @param account address to check
    /// @return _reward amount of token claimable
    function earned(
        address token,
        address account
    ) external view returns (uint256 _reward);
    /// @notice claims rewards (emissionsToken + any external LP Incentives)
    /// @param account the address to claim for
    /// @param tokens an array of the tokens to claim
    function getReward(address account, address[] calldata tokens) external;

    /// @notice calculates the token amounts earned per lp token
    /// @param token address of the token to check
    /// @return rpt reward per token
    function rewardPerToken(address token) external view returns (uint256 rpt);

    /// @notice deposit all LP tokens from msg.sender's wallet to the gauge
    function depositAll() external;
    /// @param recipient the address of who to deposit on behalf of
    /// @param amount the amount of LP tokens to withdraw
    function depositFor(address recipient, uint256 amount) external;

    /// @notice deposit LP tokens to the gauge
    /// @param amount the amount of LP tokens to withdraw
    function deposit(uint256 amount) external;

    /// @notice withdraws all fungible LP tokens from legacy gauges
    function withdrawAll() external;

    /// @notice withdraws fungible LP tokens from legacy gauges
    /// @param amount the amount of LP tokens to withdraw
    function withdraw(uint256 amount) external;

    /// @notice calculates how many tokens are left to be distributed
    /// @dev reduces per second
    /// @param token the address of the token
    function left(address token) external view returns (uint256);
    /// @notice add a reward to the whitelist
    /// @param _reward address of the reward
    function whitelistReward(address _reward) external;

    /// @notice remove rewards from the whitelist
    /// @param _reward address of the reward
    function removeRewardWhitelist(address _reward) external;

    /**
     * @notice amount must be greater than left() for the token, this is to prevent griefing attacks
     * @notice notifying rewards is completely permissionless
     * @notice if nobody registers for a newly added reward for the period it will remain in the contract indefinitely
     */
    function notifyRewardAmount(address token, uint256 amount) external;

    struct Reward {
        /// @dev tokens per second
        uint256 rewardRate;
        /// @dev 7 days after start
        uint256 periodFinish;
        uint256 lastUpdateTime;
        uint256 rewardPerTokenStored;
    }
}

File 3 of 11 : Gauge.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import {IVoter} from "./interfaces/IVoter.sol";
import {IGauge} from "./interfaces/IGauge.sol";

/// @notice Gauges are used to incentivize pools, they emit reward tokens over 7 days for staked LP tokens
contract Gauge is IGauge, ReentrancyGuard {
    using EnumerableSet for EnumerableSet.AddressSet;

    /// @notice the LP token that needs to be staked for rewards
    address public immutable stake;
    /// @notice the address of the voter contract
    address public immutable voter;
    /// @dev rewards in the array
    address[] internal rewards;
    /// @notice total supply of LP tokens staked
    uint256 public totalSupply;
    /// @notice accumulated dust from last distribution
    uint256 public dust;
    /// @dev rewards are released over 7 days
    uint256 internal constant DURATION = 7 days;
    /// @dev 1e18 precision
    uint256 internal constant PRECISION = 10 ** 18;

    mapping(address user => uint256) public balanceOf;
    mapping(address token => Reward) internal _rewardData;
    mapping(address user => mapping(address token => uint256 rewardPerToken))
        public userRewardPerTokenStored;
    mapping(address user => mapping(address token => uint256 reward))
        public storedRewardsPerUser;
    mapping(address token => bool _isReward) public isReward;

    EnumerableSet.AddressSet tokenWhitelists;

    constructor(address _stake, address _voter) {
        stake = _stake;
        voter = _voter;

        tokenWhitelists.add(IVoter(_voter).emissionsToken());
    }

    /// @dev compiled with via-ir, caching is less efficient
    modifier updateReward(address account) {
        for (uint256 i; i < rewards.length; i++) {
            _rewardData[rewards[i]].rewardPerTokenStored = rewardPerToken(
                rewards[i]
            );
            _rewardData[rewards[i]].lastUpdateTime = lastTimeRewardApplicable(
                rewards[i]
            );
            if (account != address(0)) {
                storedRewardsPerUser[account][rewards[i]] = earned(
                    rewards[i],
                    account
                );
                userRewardPerTokenStored[account][rewards[i]] = _rewardData[
                    rewards[i]
                ].rewardPerTokenStored;
            }
        }
        _;
    }

    /// @inheritdoc IGauge
    function rewardsList() external view returns (address[] memory _rewards) {
        _rewards = rewards;
    }

    /// @inheritdoc IGauge
    function rewardsListLength() external view returns (uint256 _length) {
        _length = rewards.length;
    }

    /// @inheritdoc IGauge
    function lastTimeRewardApplicable(
        address token
    ) public view returns (uint256) {
        /// @dev returns the lesser of the current unix timestamp, and the timestamp for when the period finishes for the specified reward token
        return Math.min(block.timestamp, _rewardData[token].periodFinish);
    }

    /// @inheritdoc IGauge
    function rewardData(
        address token
    ) external view override returns (Reward memory data) {
        data = _rewardData[token];
    }

    /// @inheritdoc IGauge
    function earned(
        address token,
        address account
    ) public view returns (uint256 _reward) {
        _reward =
            ((balanceOf[account] *
                (rewardPerToken(token) -
                    userRewardPerTokenStored[account][token])) / PRECISION) +
            storedRewardsPerUser[account][token];
    }

    /// @inheritdoc IGauge
    function getReward(
        address account,
        address[] calldata tokens
    ) public updateReward(account) nonReentrant {
        /// @dev ensure calls from the account or the voter address
        require(msg.sender == account || msg.sender == voter, NOT_AUTHORIZED());
        /// @dev loop through the tokens
        for (uint256 i; i < tokens.length; i++) {
            /// @dev fetch the stored rewards for the user for current index's token
            uint256 _reward = storedRewardsPerUser[account][tokens[i]];
            /// @dev if the stored rewards are greater than zero
            if (_reward > 0) {
                /// @dev zero out the rewards
                storedRewardsPerUser[account][tokens[i]] = 0;
                /// @dev transfer the expected rewards
                _safeTransfer(tokens[i], account, _reward);
                emit ClaimRewards(account, tokens[i], _reward);
            }
        }
    }

    /// @inheritdoc IGauge
    function rewardPerToken(address token) public view returns (uint256) {
        if (totalSupply == 0) {
            return _rewardData[token].rewardPerTokenStored;
        }
        return
            _rewardData[token].rewardPerTokenStored +
            ((lastTimeRewardApplicable(token) -
                _rewardData[token].lastUpdateTime) *
                _rewardData[token].rewardRate) /
            totalSupply;
    }

    /// @inheritdoc IGauge
    function depositAll() external {
        /// @dev deposits all the stake tokens for the caller
        /// @dev msg.sender is retained
        deposit(IERC20(stake).balanceOf(msg.sender));
    }

    /// @inheritdoc IGauge
    function depositFor(
        address recipient,
        uint256 amount
    ) public updateReward(recipient) nonReentrant {
        /// @dev prevent zero deposits
        require(amount != 0, ZERO_AMOUNT());
        /// @dev pull the stake from the caller
        _safeTransferFrom(stake, msg.sender, address(this), amount);
        /// @dev increment the staked supply
        totalSupply += amount;
        /// @dev add amount to the recipient
        balanceOf[recipient] += amount;

        emit Deposit(recipient, amount);
    }

    /// @inheritdoc IGauge
    function deposit(uint256 amount) public {
        /// @dev deposit an amount for the caller
        depositFor(msg.sender, amount);
    }

    /// @inheritdoc IGauge
    function withdrawAll() external {
        /// @dev withdraw the whole balance of the caller
        /// @dev msg.sender is retained throughout
        withdraw(balanceOf[msg.sender]);
    }

    /// @inheritdoc IGauge
    function withdraw(
        uint256 amount
    ) public updateReward(msg.sender) nonReentrant {
        /// @dev prevent zero withdraws
        require(amount != 0, ZERO_AMOUNT());
        /// @dev decrement the totalSupply by the withdrawal amount
        totalSupply -= amount;
        /// @dev decrement the amount from the caller's mapping
        balanceOf[msg.sender] -= amount;
        /// @dev transfer the stake token to the caller
        _safeTransfer(stake, msg.sender, amount);
        emit Withdraw(msg.sender, amount);
    }

    /// @inheritdoc IGauge
    function left(address token) public view returns (uint256) {
        /// @dev if we are at or past the periodFinish for the token, return 0
        if (block.timestamp >= _rewardData[token].periodFinish) return 0;
        /// @dev calculate the remaining time from periodFinish to current
        uint256 _remaining = _rewardData[token].periodFinish - block.timestamp;
        /// @dev return the remaining time, multiplied by the reward rate then scale to precision
        return (_remaining * _rewardData[token].rewardRate) / PRECISION;
    }

    /// @inheritdoc IGauge
    function whitelistReward(address _reward) external {
        require(msg.sender == voter, NOT_AUTHORIZED());
        /// @dev voter checks for governance whitelist before allowing call
        tokenWhitelists.add(_reward);
        emit RewardWhitelisted(_reward, true);
    }

    /// @inheritdoc IGauge
    function removeRewardWhitelist(address _reward) external {
        require(msg.sender == voter, NOT_AUTHORIZED());
        tokenWhitelists.remove(_reward);
        emit RewardWhitelisted(_reward, false);
    }

    /// @inheritdoc IGauge
    /**
     * @notice amount must be greater than left() for the token, this is to prevent griefing attacks
     * @notice notifying rewards is completely permissionless
     * @notice if nobody registers for a newly added reward for the period it will remain in the contract indefinitely
     */
    function notifyRewardAmount(
        address token,
        uint256 amount
    ) external updateReward(address(0)) nonReentrant {
        /// @dev prevent notifying the stake token
        require(token != stake, CANT_NOTIFY_STAKE());
        /// @dev do not accept 0 amounts
        require(amount != 0, ZERO_AMOUNT());
        /// @dev ensure the token is whitelisted
        require(tokenWhitelists.contains(token), NOT_WHITELISTED());

        _rewardData[token].rewardPerTokenStored = rewardPerToken(token);

        if (!isReward[token]) {
            rewards.push(token);
            isReward[token] = true;
        }

        /// @dev check actual amount transferred for compatibility with fee on transfer tokens.
        uint256 balanceBefore = IERC20(token).balanceOf(address(this));
        _safeTransferFrom(token, msg.sender, address(this), amount);
        uint256 balanceAfter = IERC20(token).balanceOf(address(this));
        amount = balanceAfter - balanceBefore;
        /// @dev add existing dust
        amount += dust;
        if (block.timestamp >= _rewardData[token].periodFinish) {
            _rewardData[token].rewardRate = (amount * PRECISION) / DURATION;
            /// @dev account for dust
            dust = amount - _rewardData[token].rewardRate * DURATION;
        } else {
            /// @dev calculate the remaining seconds based on the current timestamp
            uint256 remaining = _rewardData[token].periodFinish -
                block.timestamp;
            /// @dev calculate what is currently leftover until the reward period finishes
            uint256 _left = remaining * _rewardData[token].rewardRate;
            /// @dev block DoS
            require(
                amount * PRECISION > _left,
                NOT_GREATER_THAN_REMAINING(amount * PRECISION, _left)
            );
            /// @dev update the rewardRate to include the newly added amount
            _rewardData[token].rewardRate =
                (amount * PRECISION + _left) /
                DURATION;
            /// @dev account for dust
            dust =
                (amount + _left) -
                (_rewardData[token].rewardRate * DURATION);
        }
        /// @dev update the timestamps
        _rewardData[token].lastUpdateTime = block.timestamp;
        _rewardData[token].periodFinish = block.timestamp + DURATION;
        /// @dev check the token balance in this contract
        uint256 balance = IERC20(token).balanceOf(address(this));

        /// @dev ensure it isn't "over-emitting"
        require(
            _rewardData[token].rewardRate <= (balance * PRECISION) / DURATION,
            REWARD_TOO_HIGH()
        );

        emit NotifyReward(msg.sender, token, amount);
    }

    function isWhitelisted(address token) public view returns (bool) {
        return tokenWhitelists.contains(token);
    }

    /** internal safe transfer functions */
    function _safeTransfer(address token, address to, uint256 value) internal {
        require(
            token.code.length > 0,
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20.transfer.selector, to, value)
        );
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
    }

    function _safeTransferFrom(
        address token,
        address from,
        address to,
        uint256 value
    ) internal {
        require(
            token.code.length > 0,
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(
                IERC20.transferFrom.selector,
                from,
                to,
                value
            )
        );

        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
    }
}

File 4 of 11 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 5 of 11 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 6 of 11 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 7 of 11 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }
}

File 8 of 11 : IVoter.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
pragma abicoder v2;

interface IVoter {
    error ACTIVE_GAUGE(address gauge);

    error GAUGE_INACTIVE(address gauge);

    error ALREADY_WHITELISTED();

    error NOT_AUTHORIZED(address caller);

    error NOT_WHITELISTED();

    error NOT_POOL();

    error FORBIDDEN();

    error NOT_INIT();

    error LENGTH_MISMATCH();

    error NO_GAUGE();

    error ALREADY_DISTRIBUTED(address gauge, uint256 period);

    error ZERO_VOTE(address pool);

    error RATIO_TOO_HIGH();

    error NOT_GT_ZERO();

    error VOTE_UNSUCCESSFUL();

    error UNAUTHORIZED();

    event GaugeCreated(
        address indexed gauge,
        address creator,
        address feeDistributor,
        address indexed pool
    );

    event GaugeKilled(address indexed gauge);

    event GaugeRevived(address indexed gauge);

    event Voted(address indexed owner, uint256 weight, address indexed pool);

    event Abstained(address indexed owner, uint256 weight);

    event Deposit(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event Withdraw(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event NotifyReward(
        address indexed sender,
        address indexed reward,
        uint256 amount
    );

    event DistributeReward(
        address indexed sender,
        address indexed gauge,
        uint256 amount
    );

    event EmissionsRatio(
        address indexed caller,
        uint256 oldRatio,
        uint256 newRatio
    );

    event NewGovernor(address indexed sender, address indexed governor);

    event Whitelisted(address indexed whitelister, address indexed token);

    event WhitelistRevoked(
        address indexed forbidder,
        address indexed token,
        bool status
    );

    event CustomGaugeCreated(
        address indexed gauge,
        address creator,
        address indexed token
    );

    event MainTickSpacingChanged(
        address indexed token0,
        address indexed token1,
        int24 indexed newMainTickSpacing
    );

    /// @notice returns the address of the current governor
    /// @return _governor address of the governor
    function governor() external view returns (address _governor);
    /// @notice the address of the vote module
    /// @return _voteModule the vote module contract address
    function voteModule() external view returns (address _voteModule);

    /// @notice the address of the shadow launcher plugin to enable third party launchers
    /// @return _launcherPlugin the address of the plugin
    function launcherPlugin() external view returns (address _launcherPlugin);

    /// @notice distributes emissions from the minter to the voter
    /// @param amount the amount of tokens to notify
    function notifyRewardAmount(uint256 amount) external;

    /// @notice distributes the emissions for a specific gauge
    /// @param _gauge the gauge address
    function distribute(address _gauge) external;

    /// @notice returns the address of the gauge factory
    /// @param _gaugeFactory gauge factory address
    function gaugeFactory() external view returns (address _gaugeFactory);

    /// @notice returns the address of the feeDistributor factory
    /// @return _feeDistributorFactory feeDist factory address
    function feeDistributorFactory()
        external
        view
        returns (address _feeDistributorFactory);

    /// @notice returns the address of the minter contract
    /// @return _minter address of the minter
    function minter() external view returns (address _minter);

    /// @notice check if the gauge is active for governance use
    /// @param _gauge address of the gauge
    /// @return _trueOrFalse if the gauge is alive
    function isAlive(address _gauge) external view returns (bool _trueOrFalse);

    /// @notice allows the token to be paired with other whitelisted assets to participate in governance
    /// @param _token the address of the token
    function whitelist(address _token) external;

    /// @notice effectively disqualifies a token from governance
    /// @param _token the address of the token
    function revokeWhitelist(address _token) external;

    /// @notice returns if the address is a gauge
    /// @param gauge address of the gauge
    /// @return _trueOrFalse boolean if the address is a gauge
    function isGauge(address gauge) external view returns (bool _trueOrFalse);

    /// @notice disable a gauge from governance
    /// @param _gauge address of the gauge
    function killGauge(address _gauge) external;

    /// @notice re-activate a dead gauge
    /// @param _gauge address of the gauge
    function reviveGauge(address _gauge) external;

    /// @notice re-cast a tokenID's votes
    /// @param owner address of the owner
    function poke(address owner) external;

    /// @notice sets the main tickspacing of a token pairing
    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param tickSpacing the main tickspacing to set to
    function setMainTickSpacing(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external;

    /// @notice create a legacy-type gauge for an arbitrary token
    /// @param _token 'token' to be used
    /// @return _arbitraryGauge the address of the new custom gauge
    function createArbitraryGauge(
        address _token
    ) external returns (address _arbitraryGauge);

    /// @notice returns if the address is a fee distributor
    /// @param _feeDistributor address of the feeDist
    /// @return _trueOrFalse if the address is a fee distributor
    function isFeeDistributor(
        address _feeDistributor
    ) external view returns (bool _trueOrFalse);

    /// @notice returns the address of the emission's token
    /// @return _emissionsToken emissions token contract address
    function emissionsToken() external view returns (address _emissionsToken);

    /// @notice returns the address of the pool's gauge, if any
    /// @param _pool pool address
    /// @return _gauge gauge address
    function gaugeForPool(address _pool) external view returns (address _gauge);

    /// @notice returns the address of the pool's feeDistributor, if any
    /// @param _gauge address of the gauge
    /// @return _feeDistributor address of the pool's feedist
    function feeDistributorForGauge(
        address _gauge
    ) external view returns (address _feeDistributor);

    /// @notice returns the new toPool that was redirected fromPool
    /// @param fromPool address of the original pool
    /// @return toPool the address of the redirected pool
    function poolRedirect(
        address fromPool
    ) external view returns (address toPool);

    /// @notice returns the gauge address of a CL pool
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @param tickSpacing tickspacing of the pool
    /// @return gauge address of the gauge
    function gaugeForClPool(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external view returns (address gauge);

    /// @notice returns the array of all tickspacings for the tokenA/tokenB combination
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts array of all the tickspacings
    function tickSpacingsForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24[] memory _ts);

    /// @notice returns the main tickspacing used in the gauge/governance process
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts the main tickspacing
    function mainTickSpacingForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24 _ts);

    /// @notice returns the block.timestamp divided by 1 week in seconds
    /// @return period the period used for gauges
    function getPeriod() external view returns (uint256 period);

    /// @notice cast a vote to direct emissions to gauges and earn incentives
    /// @param owner address of the owner
    /// @param _pools the list of pools to vote on
    /// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs
    function vote(
        address owner,
        address[] calldata _pools,
        uint256[] calldata _weights
    ) external;

    /// @notice reset the vote of an address
    /// @param owner address of the owner
    function reset(address owner) external;

    /// @notice set the governor address
    /// @param _governor the new governor address
    function setGovernor(address _governor) external;

    /// @notice recover stuck emissions
    /// @param _gauge the gauge address
    /// @param _period the period
    function stuckEmissionsRecovery(address _gauge, uint256 _period) external;

    /// @notice whitelists extra rewards for a gauge
    /// @param _gauge the gauge to whitelist rewards to
    /// @param _reward the reward to whitelist
    function whitelistGaugeRewards(address _gauge, address _reward) external;

    /// @notice removes a reward from the gauge whitelist
    /// @param _gauge the gauge to remove the whitelist from
    /// @param _reward the reward to remove from the whitelist
    function removeGaugeRewardWhitelist(
        address _gauge,
        address _reward
    ) external;

    /// @notice creates a legacy gauge for the pool
    /// @param _pool pool's address
    /// @return _gauge address of the new gauge
    function createGauge(address _pool) external returns (address _gauge);

    /// @notice create a concentrated liquidity gauge
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param tickSpacing the tickspacing of the pool
    /// @return _clGauge address of the new gauge
    function createCLGauge(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external returns (address _clGauge);

    /// @notice claim concentrated liquidity gauge rewards for specific NFP token ids
    /// @param _gauges array of gauges
    /// @param _tokens two dimensional array for the tokens to claim
    /// @param _nfpTokenIds two dimensional array for the NFPs
    function claimClGaugeRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens,
        uint256[][] calldata _nfpTokenIds
    ) external;

    /// @notice claim arbitrary rewards from specific feeDists
    /// @param owner address of the owner
    /// @param _feeDistributors address of the feeDists
    /// @param _tokens two dimensional array for the tokens to claim
    function claimIncentives(
        address owner,
        address[] calldata _feeDistributors,
        address[][] calldata _tokens
    ) external;

    /// @notice claim arbitrary rewards from specific gauges
    /// @param _gauges address of the gauges
    /// @param _tokens two dimensional array for the tokens to claim
    function claimRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens
    ) external;

    /// @notice distribute emissions to a gauge for a specific period
    /// @param _gauge address of the gauge
    /// @param _period value of the period
    function distributeForPeriod(address _gauge, uint256 _period) external;

    /// @notice attempt distribution of emissions to all gauges
    function distributeAll() external;

    /// @notice distribute emissions to gauges by index
    /// @param startIndex start of the loop
    /// @param endIndex end of the loop
    function batchDistributeByIndex(
        uint256 startIndex,
        uint256 endIndex
    ) external;

    /// @notice returns the votes cast for a tokenID
    /// @param owner address of the owner
    /// @return votes an array of votes casted
    /// @return weights an array of the weights casted per pool
    function getVotes(
        address owner,
        uint256 period
    ) external view returns (address[] memory votes, uint256[] memory weights);

    /// @notice returns an array of all the gauges
    /// @return _gauges the array of gauges
    function getAllGauges() external view returns (address[] memory _gauges);

    /// @notice returns an array of all the feeDists
    /// @return _feeDistributors the array of feeDists
    function getAllFeeDistributors()
        external
        view
        returns (address[] memory _feeDistributors);

    /// @notice sets the xShadowRatio default
    function setGlobalRatio(uint256 _xRatio) external;

    /// @notice returns the array of all custom/arbitrary pools
    function getAllCustomPools()
        external
        view
        returns (address[] memory _customPools);

    /// @notice whether the token is whitelisted in governance
    function isWhitelisted(address _token) external view returns (bool _tf);

    /// @notice function for removing malicious or stuffed tokens
    function removeFeeDistributorReward(
        address _feeDist,
        address _token
    ) external;
}

File 9 of 11 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 10 of 11 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 11 of 11 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/",
    "forge-std/=dependencies/forge-std-1.9.4/src/",
    "permit2/=lib/permit2/",
    "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/",
    "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@uniswap/=node_modules/@uniswap/",
    "base64-sol/=node_modules/base64-sol/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/",
    "hardhat/=node_modules/hardhat/",
    "solmate/=node_modules/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 100
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_pool","type":"address"}],"name":"createGauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastGauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

60808060405234601557611e7e908161001a8239f35b5f80fdfe6080806040526004361015610012575f80fd5b5f3560e01c908163a5f4301e1461005d575063b46d346514610032575f80fd5b34610059575f366003190112610059575f546040516001600160a01b039091168152602090f35b5f80fd5b34610059576020366003190112610059576004356001600160a01b0381169081900361005957611d4880830183811067ffffffffffffffff8211176100ec576040928492610101843981523360208201520301905ff080156100e1575f80546001600160a01b0319166001600160a01b039092169182179055604051908152602090f35b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffdfe60c0806040523461011a57604081611d48803803809161001f8285610131565b83398101031261011a576020816100428261003b600495610168565b9201610168565b60015f5560809190915260a081905260405163210ca05d60e01b815292839182906001600160a01b03165afa8015610126575f906100e7575b61008d906001600160a01b031661017c565b50604051611b3f908161020982396080518181816101c0015281816103c9015281816109d401528181610cf6015281816111c40152611762015260a05181818161025c01528181610c200152818161100f01526113b50152f35b506020813d60201161011e575b8161010160209383610131565b8101031261011a5761011561008d91610168565b61007b565b5f80fd5b3d91506100f4565b6040513d5f823e3d90fd5b601f909101601f19168101906001600160401b0382119082101761015457604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361011a57565b805f52600a60205260405f2054155f1461020357600954680100000000000000008110156101545760018101806009558110156101ef577f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af018190556009545f918252600a602052604090912055600190565b634e487b7160e01b5f52603260045260245ffd5b505f9056fe60806040526004361015610011575f80fd5b5f3560e01c80630c96238f1461139a57806318160ddd1461137d578063211dc32d146113515780632e1a7d4d1461121c5780632f4f21e21461103d57806331279d3d14610d755780633692525914610d255780633a4b66f114610ce15780633af32abf14610c9f5780633ca068b614610c4f57806346c96aac14610c0b57806348e5d9f814610b6d5780634d5ce03814610b30578063638634ee14610b0d57806370a0823114610ad55780638003b61414610a2a578063853828b61461082e57806399bcc0521461080b578063b66503cf146102f5578063b6b55f25146102d9578063db89461b14610241578063de5f626814610195578063e688639614610178578063f12297771461014d5763fad9aba31461012c575f80fd5b34610149575f366003190112610149576020600354604051908152f35b5f80fd5b3461014957602036600319011261014957602061017061016b611422565b6117e0565b604051908152f35b34610149575f366003190112610149576020600154604051908152f35b34610149575f366003190112610149576040516370a0823160e01b81523360048201526020816024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa8015610236575f90610202575b61020090611629565b005b506020813d60201161022e575b8161021c60209383611582565b810103126101495761020090516101f7565b3d915061020f565b6040513d5f823e3d90fd5b346101495760203660031901126101495761025a611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b031661029c81611ab9565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f646602060405160018152a2005b633d83866f60e01b5f5260045ffd5b3461014957602036600319011261014957610200600435611629565b346101495760403660031901126101495761030e611422565b602435905f5b6001548110156103b1578061034061032d600193611501565b848060a01b0391549060031b1c166117e0565b61034982611501565b848060a01b0391549060031b1c165f526005602052600360405f20015561038561037282611501565b848060a01b0391549060031b1c166115a4565b61038e82611501565b848060a01b0391549060031b1c165f526005602052600260405f20015501610314565b506103ba611851565b6001600160a01b0381811692907f00000000000000000000000000000000000000000000000000000000000000001683146107fc5780156107ed5761040a835f52600a60205260405f2054151590565b156107de57610418826117e0565b835f526005602052600360405f200155825f52600860205260ff60405f20541615610772575b6040516370a0823160e01b815230600482015290602082602481875afa918215610236575f9261073c575b50610478919230903390611987565b6040516370a0823160e01b8152306004820152602081602481865afa908115610236575f91610708575b506104b9916104b09161144e565b6003549061146e565b5f82815260056020526040902060010154421061064157670de0b6b3a76400008102818104670de0b6b3a764000014821517156105fb575f83815260056020526040902062093a8091829004908190558082029181159183041417156105fb57610523908261144e565b6003555b815f52600560205242600260405f20015562093a8042018042116105fb57825f526005602052600160405f2001556040516370a0823160e01b8152306004820152602081602481865afa908115610236575f9161060f575b50825f52600560205260405f205490670de0b6b3a7640000810290808204670de0b6b3a764000014901517156105fb5762093a809004106105ec576040519081527ff70d5c697de7ea828df48e5c4573cb2194c659f1901f70110c52b066dcf5082660203392a360015f55005b6330f9e1ed60e11b5f5260045ffd5b634e487b7160e01b5f52601160045260245ffd5b90506020813d602011610639575b8161062a60209383611582565b8101031261014957518361057f565b3d915061061d565b815f52600560205261067061065d42600160405f20015461144e565b835f52600560205260405f20549061145b565b670de0b6b3a76400008202828104670de0b6b3a764000014831517156105fb57818111156106f3579062093a806106aa826106be9461146e565b04845f52600560205260405f20558261146e565b825f52600560205260405f205462093a8081029080820462093a8014901517156105fb576106eb9161144e565b600355610527565b6372fc575760e01b5f5260045260245260445ffd5b90506020813d602011610734575b8161072360209383611582565b8101031261014957516104b96104a2565b3d9150610716565b91506020823d60201161076a575b8161075760209383611582565b8101031261014957610478915191610469565b3d915061074a565b600154600160401b8110156107ca578060016107919201600155611501565b81546001600160a01b0360039290921b91821b19169085901b1790555f838152600860205260409020805460ff1916600117905561043e565b634e487b7160e01b5f52604160045260245ffd5b635ffde35f60e11b5f5260045ffd5b630f6fa54560e41b5f5260045ffd5b63c6034fed60e01b5f5260045ffd5b34610149576020366003190112610149576020610170610829611422565b6115c6565b34610149575f36600319011261014957335f52600460205260405f20545f331515905b600154811015610996578061086a61032d600193611501565b61087382611501565b848060a01b0391549060031b1c165f526005602052600360405f200155826108b061089d83611501565b858060a01b0391549060031b1c166115a4565b6108b983611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556108e1575b01610851565b6109036108ed82611501565b903391858060a01b0391549060031b1c1661147b565b335f52600760205260405f2061091883611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561094081611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061097283611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556108db565b8261099f611851565b80156107ed576109b18160025461144e565b600255335f52600460205260405f206109cb82825461144e565b90556109f881337f00000000000000000000000000000000000000000000000000000000000000006118ee565b6040519081527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436460203392a260015f55005b34610149575f366003190112610149576040518060206001549283815201809260015f5260205f20905f5b818110610ab65750505081610a6b910382611582565b604051918291602083019060208452518091526040830191905f5b818110610a94575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610a86565b82546001600160a01b0316845260209093019260019283019201610a55565b34610149576020366003190112610149576001600160a01b03610af6611422565b165f526004602052602060405f2054604051908152f35b34610149576020366003190112610149576020610170610b2b611422565b6115a4565b34610149576020366003190112610149576001600160a01b03610b51611422565b165f526008602052602060ff60405f2054166040519015158152f35b3461014957602036600319011261014957610b86611422565b5f6060604051610b9581611566565b828152826020820152826040820152015260018060a01b03165f526005602052608060405f20604051610bc781611566565b815491828252600181015460208301908152606060036002840154936040860194855201549301928352604051938452516020840152516040830152516060820152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610c68611422565b610c70611438565b6001600160a01b039182165f908152600660209081526040808320949093168252928352819020549051908152f35b34610149576020366003190112610149576020610cd76001600160a01b03610cc5611422565b165f52600a60205260405f2054151590565b6040519015158152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610d3e611422565b610d46611438565b6001600160a01b039182165f908152600760209081526040808320949093168252928352819020549051908152f35b3461014957604036600319011261014957610d8e611422565b6024359067ffffffffffffffff8211610149573660238301121561014957816004013567ffffffffffffffff8111610149576024830192602436918360051b01011161014957906001600160a01b038116908115155f5b600154811015610f155780610dfe61032d600193611501565b610e0782611501565b848060a01b0391549060031b1c165f526005602052600360405f20015582610e3161089d83611501565b610e3a83611501565b858060a01b0391549060031b1c165f526005602052600260405f200155610e62575b01610de5565b610e8284610e6f83611501565b858060a01b0391549060031b1c1661147b565b855f52600760205260405f20610e9783611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610ebf81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154855f52600660205260405f20610ef183611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610e5c565b50509190610f21611851565b803314801561100b575b156102ca575f5b828110610f3f5760015f55005b600190825f52600760205260405f20610f61610f5c83878a611542565b611552565b838060a01b03165f5260205260405f205480610f7f575b5001610f32565b835f52600760205260405f20610f99610f5c84888b611542565b848060a01b03165f526020525f6040812055610fc38187610fbe610f5c868a8d611542565b6118ee565b837f9aa05b3d70a9e3e2f004f039648839560576334fb45c81f91b6db03ad9e2efc9602089610ffc610f5c878b8a8060a01b0394611542565b1693604051908152a386610f78565b50337f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031614610f2b565b3461014957604036600319011261014957611056611422565b6001600160a01b0381168015159160243591905f5b600154811015611188578061108461032d600193611501565b61108d82611501565b848060a01b0391549060031b1c165f526005602052600360405f200155856110b761089d83611501565b6110c083611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556110e8575b0161106b565b6110f583610e6f83611501565b845f52600760205260405f2061110a83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561113281611501565b838060a01b0391549060031b1c165f526005602052600360405f200154845f52600660205260405f2061116483611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556110e2565b8284611192611851565b80156107ed576020816111e87fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c9330337f0000000000000000000000000000000000000000000000000000000000000000611987565b6111f48160025461146e565b600255835f526004825260405f2061120d82825461146e565b9055604051908152a260015f55005b34610149576020366003190112610149576004353315155f5b600154811015610996578061124e61032d600193611501565b61125782611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261128161089d83611501565b61128a83611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556112b2575b01611235565b6112be6108ed82611501565b335f52600760205260405f206112d383611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112fb81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061132d83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112ac565b3461014957604036600319011261014957602061017061136f611422565b611377611438565b9061147b565b34610149575f366003190112610149576020600254604051908152f35b34610149576020366003190112610149576113b3611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b03166113f5816119de565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f64660206040515f8152a2005b600435906001600160a01b038216820361014957565b602435906001600160a01b038216820361014957565b919082039182116105fb57565b818102929181159184041417156105fb57565b919082018092116105fb57565b6114fe9160018060a01b031690815f526004602052670de0b6b3a76400006114d860405f20546114d26114ad856117e0565b865f52600660205260405f2060018060a01b0387165f5260205260405f20549061144e565b9061145b565b04915f52600760205260405f209060018060a01b03165f5260205260405f20549061146e565b90565b6001548110156115195760015f5260205f2001905f90565b634e487b7160e01b5f52603260045260245ffd5b8054821015611519575f5260205f2001905f90565b91908110156115195760051b0190565b356001600160a01b03811681036101495790565b6080810190811067ffffffffffffffff8211176107ca57604052565b90601f8019910116810190811067ffffffffffffffff8211176107ca57604052565b60018060a01b03165f526005602052600160405f200154804210814218021890565b6001600160a01b03165f818152600560205260409020600101544210156116245761162081670de0b6b3a7640000925f52600560205261160d42600160405f20015461144e565b905f52600560205260405f20549061145b565b0490565b505f90565b3315155f5b60015481101561174a578061164761032d600193611501565b61165082611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261167a61089d83611501565b61168383611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556116ab575b0161162e565b6116b76108ed82611501565b335f52600760205260405f206116cc83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116f481611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061172683611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116a5565b5050611754611851565b80156107ed576117868130337f0000000000000000000000000000000000000000000000000000000000000000611987565b6117928160025461146e565b600255335f52600460205260405f206117ac82825461146e565b90556040519081527fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c60203392a260015f55565b600254801561183357906114fe9161182c60018060a01b038316805f52600560205261160d611816600360405f200154956115a4565b825f526005602052600260405f2001549061144e565b049061146e565b506001600160a01b03165f9081526005602052604090206003015490565b60025f54146118605760025f55565b633ee5aeb560e01b5f5260045ffd5b156118775750565b63634e5fc360e11b5f9081526001600160a01b0391909116600452602490fd5b3d156118d1573d9067ffffffffffffffff82116107ca57604051916118c6601f8201601f191660200184611582565b82523d5f602084013e565b606090565b90816020910312610149575180151581036101495790565b905f80916119569461190385803b151561186f565b60405163a9059cbb60e01b602082019081526001600160a01b03909316602482015260448082019290925290815261193c606482611582565b519082855af161194a611897565b81611958575b5061186f565b565b805180159250821561196d575b50505f611950565b61198092506020809183010191016118d6565b5f80611965565b915f9182916119569561199d86803b151561186f565b6040516323b872dd60e01b602082019081526001600160a01b039485166024830152939092166044830152606480830191909152815261193c608482611582565b5f818152600a60205260409020548015611ab3575f1981018181116105fb576009545f198101919082116105fb57818103611a65575b5050506009548015611a51575f1901611a2e81600961152d565b8154905f199060031b1b191690556009555f52600a6020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b611a9d611a76611a8793600961152d565b90549060031b1c928392600961152d565b819391549060031b91821b915f19901b19161790565b90555f52600a60205260405f20555f8080611a14565b50505f90565b805f52600a60205260405f2054155f1461162457600954600160401b8110156107ca57611af2611a87826001859401600955600961152d565b9055600954905f52600a60205260405f205560019056fea26469706673582212209e079c55f705eb7478f164da92f1cef7ec6c42093915eaef269bf572087ed0a764736f6c634300081c0033a26469706673582212201e8b96e4589bf489797804b50d5f16702ec0a226b5392c5754a00ec18055862764736f6c634300081c0033

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f3560e01c908163a5f4301e1461005d575063b46d346514610032575f80fd5b34610059575f366003190112610059575f546040516001600160a01b039091168152602090f35b5f80fd5b34610059576020366003190112610059576004356001600160a01b0381169081900361005957611d4880830183811067ffffffffffffffff8211176100ec576040928492610101843981523360208201520301905ff080156100e1575f80546001600160a01b0319166001600160a01b039092169182179055604051908152602090f35b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffdfe60c0806040523461011a57604081611d48803803809161001f8285610131565b83398101031261011a576020816100428261003b600495610168565b9201610168565b60015f5560809190915260a081905260405163210ca05d60e01b815292839182906001600160a01b03165afa8015610126575f906100e7575b61008d906001600160a01b031661017c565b50604051611b3f908161020982396080518181816101c0015281816103c9015281816109d401528181610cf6015281816111c40152611762015260a05181818161025c01528181610c200152818161100f01526113b50152f35b506020813d60201161011e575b8161010160209383610131565b8101031261011a5761011561008d91610168565b61007b565b5f80fd5b3d91506100f4565b6040513d5f823e3d90fd5b601f909101601f19168101906001600160401b0382119082101761015457604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361011a57565b805f52600a60205260405f2054155f1461020357600954680100000000000000008110156101545760018101806009558110156101ef577f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af018190556009545f918252600a602052604090912055600190565b634e487b7160e01b5f52603260045260245ffd5b505f9056fe60806040526004361015610011575f80fd5b5f3560e01c80630c96238f1461139a57806318160ddd1461137d578063211dc32d146113515780632e1a7d4d1461121c5780632f4f21e21461103d57806331279d3d14610d755780633692525914610d255780633a4b66f114610ce15780633af32abf14610c9f5780633ca068b614610c4f57806346c96aac14610c0b57806348e5d9f814610b6d5780634d5ce03814610b30578063638634ee14610b0d57806370a0823114610ad55780638003b61414610a2a578063853828b61461082e57806399bcc0521461080b578063b66503cf146102f5578063b6b55f25146102d9578063db89461b14610241578063de5f626814610195578063e688639614610178578063f12297771461014d5763fad9aba31461012c575f80fd5b34610149575f366003190112610149576020600354604051908152f35b5f80fd5b3461014957602036600319011261014957602061017061016b611422565b6117e0565b604051908152f35b34610149575f366003190112610149576020600154604051908152f35b34610149575f366003190112610149576040516370a0823160e01b81523360048201526020816024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa8015610236575f90610202575b61020090611629565b005b506020813d60201161022e575b8161021c60209383611582565b810103126101495761020090516101f7565b3d915061020f565b6040513d5f823e3d90fd5b346101495760203660031901126101495761025a611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b031661029c81611ab9565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f646602060405160018152a2005b633d83866f60e01b5f5260045ffd5b3461014957602036600319011261014957610200600435611629565b346101495760403660031901126101495761030e611422565b602435905f5b6001548110156103b1578061034061032d600193611501565b848060a01b0391549060031b1c166117e0565b61034982611501565b848060a01b0391549060031b1c165f526005602052600360405f20015561038561037282611501565b848060a01b0391549060031b1c166115a4565b61038e82611501565b848060a01b0391549060031b1c165f526005602052600260405f20015501610314565b506103ba611851565b6001600160a01b0381811692907f00000000000000000000000000000000000000000000000000000000000000001683146107fc5780156107ed5761040a835f52600a60205260405f2054151590565b156107de57610418826117e0565b835f526005602052600360405f200155825f52600860205260ff60405f20541615610772575b6040516370a0823160e01b815230600482015290602082602481875afa918215610236575f9261073c575b50610478919230903390611987565b6040516370a0823160e01b8152306004820152602081602481865afa908115610236575f91610708575b506104b9916104b09161144e565b6003549061146e565b5f82815260056020526040902060010154421061064157670de0b6b3a76400008102818104670de0b6b3a764000014821517156105fb575f83815260056020526040902062093a8091829004908190558082029181159183041417156105fb57610523908261144e565b6003555b815f52600560205242600260405f20015562093a8042018042116105fb57825f526005602052600160405f2001556040516370a0823160e01b8152306004820152602081602481865afa908115610236575f9161060f575b50825f52600560205260405f205490670de0b6b3a7640000810290808204670de0b6b3a764000014901517156105fb5762093a809004106105ec576040519081527ff70d5c697de7ea828df48e5c4573cb2194c659f1901f70110c52b066dcf5082660203392a360015f55005b6330f9e1ed60e11b5f5260045ffd5b634e487b7160e01b5f52601160045260245ffd5b90506020813d602011610639575b8161062a60209383611582565b8101031261014957518361057f565b3d915061061d565b815f52600560205261067061065d42600160405f20015461144e565b835f52600560205260405f20549061145b565b670de0b6b3a76400008202828104670de0b6b3a764000014831517156105fb57818111156106f3579062093a806106aa826106be9461146e565b04845f52600560205260405f20558261146e565b825f52600560205260405f205462093a8081029080820462093a8014901517156105fb576106eb9161144e565b600355610527565b6372fc575760e01b5f5260045260245260445ffd5b90506020813d602011610734575b8161072360209383611582565b8101031261014957516104b96104a2565b3d9150610716565b91506020823d60201161076a575b8161075760209383611582565b8101031261014957610478915191610469565b3d915061074a565b600154600160401b8110156107ca578060016107919201600155611501565b81546001600160a01b0360039290921b91821b19169085901b1790555f838152600860205260409020805460ff1916600117905561043e565b634e487b7160e01b5f52604160045260245ffd5b635ffde35f60e11b5f5260045ffd5b630f6fa54560e41b5f5260045ffd5b63c6034fed60e01b5f5260045ffd5b34610149576020366003190112610149576020610170610829611422565b6115c6565b34610149575f36600319011261014957335f52600460205260405f20545f331515905b600154811015610996578061086a61032d600193611501565b61087382611501565b848060a01b0391549060031b1c165f526005602052600360405f200155826108b061089d83611501565b858060a01b0391549060031b1c166115a4565b6108b983611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556108e1575b01610851565b6109036108ed82611501565b903391858060a01b0391549060031b1c1661147b565b335f52600760205260405f2061091883611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561094081611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061097283611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556108db565b8261099f611851565b80156107ed576109b18160025461144e565b600255335f52600460205260405f206109cb82825461144e565b90556109f881337f00000000000000000000000000000000000000000000000000000000000000006118ee565b6040519081527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436460203392a260015f55005b34610149575f366003190112610149576040518060206001549283815201809260015f5260205f20905f5b818110610ab65750505081610a6b910382611582565b604051918291602083019060208452518091526040830191905f5b818110610a94575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610a86565b82546001600160a01b0316845260209093019260019283019201610a55565b34610149576020366003190112610149576001600160a01b03610af6611422565b165f526004602052602060405f2054604051908152f35b34610149576020366003190112610149576020610170610b2b611422565b6115a4565b34610149576020366003190112610149576001600160a01b03610b51611422565b165f526008602052602060ff60405f2054166040519015158152f35b3461014957602036600319011261014957610b86611422565b5f6060604051610b9581611566565b828152826020820152826040820152015260018060a01b03165f526005602052608060405f20604051610bc781611566565b815491828252600181015460208301908152606060036002840154936040860194855201549301928352604051938452516020840152516040830152516060820152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610c68611422565b610c70611438565b6001600160a01b039182165f908152600660209081526040808320949093168252928352819020549051908152f35b34610149576020366003190112610149576020610cd76001600160a01b03610cc5611422565b165f52600a60205260405f2054151590565b6040519015158152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610d3e611422565b610d46611438565b6001600160a01b039182165f908152600760209081526040808320949093168252928352819020549051908152f35b3461014957604036600319011261014957610d8e611422565b6024359067ffffffffffffffff8211610149573660238301121561014957816004013567ffffffffffffffff8111610149576024830192602436918360051b01011161014957906001600160a01b038116908115155f5b600154811015610f155780610dfe61032d600193611501565b610e0782611501565b848060a01b0391549060031b1c165f526005602052600360405f20015582610e3161089d83611501565b610e3a83611501565b858060a01b0391549060031b1c165f526005602052600260405f200155610e62575b01610de5565b610e8284610e6f83611501565b858060a01b0391549060031b1c1661147b565b855f52600760205260405f20610e9783611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610ebf81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154855f52600660205260405f20610ef183611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610e5c565b50509190610f21611851565b803314801561100b575b156102ca575f5b828110610f3f5760015f55005b600190825f52600760205260405f20610f61610f5c83878a611542565b611552565b838060a01b03165f5260205260405f205480610f7f575b5001610f32565b835f52600760205260405f20610f99610f5c84888b611542565b848060a01b03165f526020525f6040812055610fc38187610fbe610f5c868a8d611542565b6118ee565b837f9aa05b3d70a9e3e2f004f039648839560576334fb45c81f91b6db03ad9e2efc9602089610ffc610f5c878b8a8060a01b0394611542565b1693604051908152a386610f78565b50337f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031614610f2b565b3461014957604036600319011261014957611056611422565b6001600160a01b0381168015159160243591905f5b600154811015611188578061108461032d600193611501565b61108d82611501565b848060a01b0391549060031b1c165f526005602052600360405f200155856110b761089d83611501565b6110c083611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556110e8575b0161106b565b6110f583610e6f83611501565b845f52600760205260405f2061110a83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561113281611501565b838060a01b0391549060031b1c165f526005602052600360405f200154845f52600660205260405f2061116483611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556110e2565b8284611192611851565b80156107ed576020816111e87fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c9330337f0000000000000000000000000000000000000000000000000000000000000000611987565b6111f48160025461146e565b600255835f526004825260405f2061120d82825461146e565b9055604051908152a260015f55005b34610149576020366003190112610149576004353315155f5b600154811015610996578061124e61032d600193611501565b61125782611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261128161089d83611501565b61128a83611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556112b2575b01611235565b6112be6108ed82611501565b335f52600760205260405f206112d383611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112fb81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061132d83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112ac565b3461014957604036600319011261014957602061017061136f611422565b611377611438565b9061147b565b34610149575f366003190112610149576020600254604051908152f35b34610149576020366003190112610149576113b3611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b03166113f5816119de565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f64660206040515f8152a2005b600435906001600160a01b038216820361014957565b602435906001600160a01b038216820361014957565b919082039182116105fb57565b818102929181159184041417156105fb57565b919082018092116105fb57565b6114fe9160018060a01b031690815f526004602052670de0b6b3a76400006114d860405f20546114d26114ad856117e0565b865f52600660205260405f2060018060a01b0387165f5260205260405f20549061144e565b9061145b565b04915f52600760205260405f209060018060a01b03165f5260205260405f20549061146e565b90565b6001548110156115195760015f5260205f2001905f90565b634e487b7160e01b5f52603260045260245ffd5b8054821015611519575f5260205f2001905f90565b91908110156115195760051b0190565b356001600160a01b03811681036101495790565b6080810190811067ffffffffffffffff8211176107ca57604052565b90601f8019910116810190811067ffffffffffffffff8211176107ca57604052565b60018060a01b03165f526005602052600160405f200154804210814218021890565b6001600160a01b03165f818152600560205260409020600101544210156116245761162081670de0b6b3a7640000925f52600560205261160d42600160405f20015461144e565b905f52600560205260405f20549061145b565b0490565b505f90565b3315155f5b60015481101561174a578061164761032d600193611501565b61165082611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261167a61089d83611501565b61168383611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556116ab575b0161162e565b6116b76108ed82611501565b335f52600760205260405f206116cc83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116f481611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061172683611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116a5565b5050611754611851565b80156107ed576117868130337f0000000000000000000000000000000000000000000000000000000000000000611987565b6117928160025461146e565b600255335f52600460205260405f206117ac82825461146e565b90556040519081527fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c60203392a260015f55565b600254801561183357906114fe9161182c60018060a01b038316805f52600560205261160d611816600360405f200154956115a4565b825f526005602052600260405f2001549061144e565b049061146e565b506001600160a01b03165f9081526005602052604090206003015490565b60025f54146118605760025f55565b633ee5aeb560e01b5f5260045ffd5b156118775750565b63634e5fc360e11b5f9081526001600160a01b0391909116600452602490fd5b3d156118d1573d9067ffffffffffffffff82116107ca57604051916118c6601f8201601f191660200184611582565b82523d5f602084013e565b606090565b90816020910312610149575180151581036101495790565b905f80916119569461190385803b151561186f565b60405163a9059cbb60e01b602082019081526001600160a01b03909316602482015260448082019290925290815261193c606482611582565b519082855af161194a611897565b81611958575b5061186f565b565b805180159250821561196d575b50505f611950565b61198092506020809183010191016118d6565b5f80611965565b915f9182916119569561199d86803b151561186f565b6040516323b872dd60e01b602082019081526001600160a01b039485166024830152939092166044830152606480830191909152815261193c608482611582565b5f818152600a60205260409020548015611ab3575f1981018181116105fb576009545f198101919082116105fb57818103611a65575b5050506009548015611a51575f1901611a2e81600961152d565b8154905f199060031b1b191690556009555f52600a6020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b611a9d611a76611a8793600961152d565b90549060031b1c928392600961152d565b819391549060031b91821b915f19901b19161790565b90555f52600a60205260405f20555f8080611a14565b50505f90565b805f52600a60205260405f2054155f1461162457600954600160401b8110156107ca57611af2611a87826001859401600955600961152d565b9055600954905f52600a60205260405f205560019056fea26469706673582212209e079c55f705eb7478f164da92f1cef7ec6c42093915eaef269bf572087ed0a764736f6c634300081c0033a26469706673582212201e8b96e4589bf489797804b50d5f16702ec0a226b5392c5754a00ec18055862764736f6c634300081c0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.