Source Code
Overview
S Balance
0 S
More Info
ContractCreator
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
GaugeFactory
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 100 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; import {IGauge} from "./../interfaces/IGauge.sol"; import {Gauge} from "./../Gauge.sol"; contract GaugeFactory { address public lastGauge; function createGauge(address _pool) external returns (address) { lastGauge = address(new Gauge(_pool, msg.sender)); return lastGauge; } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.26; interface IGauge { error ZERO_AMOUNT(); error CANT_NOTIFY_STAKE(); error REWARD_TOO_HIGH(); error NOT_GREATER_THAN_REMAINING(uint256 amount, uint256 remaining); error TOKEN_ERROR(address token); error NOT_WHITELISTED(); error NOT_AUTHORIZED(); event Deposit(address indexed from, uint256 amount); event Withdraw(address indexed from, uint256 amount); event NotifyReward( address indexed from, address indexed reward, uint256 amount ); event ClaimRewards( address indexed from, address indexed reward, uint256 amount ); event RewardWhitelisted(address indexed reward, bool whitelisted); /// @notice returns an array with all the addresses of the rewards /// @return _rewards array of addresses for rewards function rewardsList() external view returns (address[] memory _rewards); /// @notice number of different rewards the gauge has facilitated that are 'active' /// @return _length the number of individual rewards function rewardsListLength() external view returns (uint256 _length); /// @notice returns the last time the reward was modified or periodFinish if the reward has ended /// @param token address of the token /// @return ltra last time reward applicable function lastTimeRewardApplicable( address token ) external view returns (uint256 ltra); /// @notice displays the data struct of rewards for a token /// @param token the address of the token /// @return data rewards struct function rewardData( address token ) external view returns (Reward memory data); /// @notice calculates the amount of tokens earned for an address /// @param token address of the token to check /// @param account address to check /// @return _reward amount of token claimable function earned( address token, address account ) external view returns (uint256 _reward); /// @notice claims rewards (emissionsToken + any external LP Incentives) /// @param account the address to claim for /// @param tokens an array of the tokens to claim function getReward(address account, address[] calldata tokens) external; /// @notice calculates the token amounts earned per lp token /// @param token address of the token to check /// @return rpt reward per token function rewardPerToken(address token) external view returns (uint256 rpt); /// @notice deposit all LP tokens from msg.sender's wallet to the gauge function depositAll() external; /// @param recipient the address of who to deposit on behalf of /// @param amount the amount of LP tokens to withdraw function depositFor(address recipient, uint256 amount) external; /// @notice deposit LP tokens to the gauge /// @param amount the amount of LP tokens to withdraw function deposit(uint256 amount) external; /// @notice withdraws all fungible LP tokens from legacy gauges function withdrawAll() external; /// @notice withdraws fungible LP tokens from legacy gauges /// @param amount the amount of LP tokens to withdraw function withdraw(uint256 amount) external; /// @notice calculates how many tokens are left to be distributed /// @dev reduces per second /// @param token the address of the token function left(address token) external view returns (uint256); /// @notice add a reward to the whitelist /// @param _reward address of the reward function whitelistReward(address _reward) external; /// @notice remove rewards from the whitelist /// @param _reward address of the reward function removeRewardWhitelist(address _reward) external; /** * @notice amount must be greater than left() for the token, this is to prevent griefing attacks * @notice notifying rewards is completely permissionless * @notice if nobody registers for a newly added reward for the period it will remain in the contract indefinitely */ function notifyRewardAmount(address token, uint256 amount) external; struct Reward { /// @dev tokens per second uint256 rewardRate; /// @dev 7 days after start uint256 periodFinish; uint256 lastUpdateTime; uint256 rewardPerTokenStored; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import {IVoter} from "./interfaces/IVoter.sol"; import {IGauge} from "./interfaces/IGauge.sol"; /// @notice Gauges are used to incentivize pools, they emit reward tokens over 7 days for staked LP tokens contract Gauge is IGauge, ReentrancyGuard { using EnumerableSet for EnumerableSet.AddressSet; /// @notice the LP token that needs to be staked for rewards address public immutable stake; /// @notice the address of the voter contract address public immutable voter; /// @dev rewards in the array address[] internal rewards; /// @notice total supply of LP tokens staked uint256 public totalSupply; /// @notice accumulated dust from last distribution uint256 public dust; /// @dev rewards are released over 7 days uint256 internal constant DURATION = 7 days; /// @dev 1e18 precision uint256 internal constant PRECISION = 10 ** 18; mapping(address user => uint256) public balanceOf; mapping(address token => Reward) internal _rewardData; mapping(address user => mapping(address token => uint256 rewardPerToken)) public userRewardPerTokenStored; mapping(address user => mapping(address token => uint256 reward)) public storedRewardsPerUser; mapping(address token => bool _isReward) public isReward; EnumerableSet.AddressSet tokenWhitelists; constructor(address _stake, address _voter) { stake = _stake; voter = _voter; tokenWhitelists.add(IVoter(_voter).emissionsToken()); } /// @dev compiled with via-ir, caching is less efficient modifier updateReward(address account) { for (uint256 i; i < rewards.length; i++) { _rewardData[rewards[i]].rewardPerTokenStored = rewardPerToken( rewards[i] ); _rewardData[rewards[i]].lastUpdateTime = lastTimeRewardApplicable( rewards[i] ); if (account != address(0)) { storedRewardsPerUser[account][rewards[i]] = earned( rewards[i], account ); userRewardPerTokenStored[account][rewards[i]] = _rewardData[ rewards[i] ].rewardPerTokenStored; } } _; } /// @inheritdoc IGauge function rewardsList() external view returns (address[] memory _rewards) { _rewards = rewards; } /// @inheritdoc IGauge function rewardsListLength() external view returns (uint256 _length) { _length = rewards.length; } /// @inheritdoc IGauge function lastTimeRewardApplicable( address token ) public view returns (uint256) { /// @dev returns the lesser of the current unix timestamp, and the timestamp for when the period finishes for the specified reward token return Math.min(block.timestamp, _rewardData[token].periodFinish); } /// @inheritdoc IGauge function rewardData( address token ) external view override returns (Reward memory data) { data = _rewardData[token]; } /// @inheritdoc IGauge function earned( address token, address account ) public view returns (uint256 _reward) { _reward = ((balanceOf[account] * (rewardPerToken(token) - userRewardPerTokenStored[account][token])) / PRECISION) + storedRewardsPerUser[account][token]; } /// @inheritdoc IGauge function getReward( address account, address[] calldata tokens ) public updateReward(account) nonReentrant { /// @dev ensure calls from the account or the voter address require(msg.sender == account || msg.sender == voter, NOT_AUTHORIZED()); /// @dev loop through the tokens for (uint256 i; i < tokens.length; i++) { /// @dev fetch the stored rewards for the user for current index's token uint256 _reward = storedRewardsPerUser[account][tokens[i]]; /// @dev if the stored rewards are greater than zero if (_reward > 0) { /// @dev zero out the rewards storedRewardsPerUser[account][tokens[i]] = 0; /// @dev transfer the expected rewards _safeTransfer(tokens[i], account, _reward); emit ClaimRewards(account, tokens[i], _reward); } } } /// @inheritdoc IGauge function rewardPerToken(address token) public view returns (uint256) { if (totalSupply == 0) { return _rewardData[token].rewardPerTokenStored; } return _rewardData[token].rewardPerTokenStored + ((lastTimeRewardApplicable(token) - _rewardData[token].lastUpdateTime) * _rewardData[token].rewardRate) / totalSupply; } /// @inheritdoc IGauge function depositAll() external { /// @dev deposits all the stake tokens for the caller /// @dev msg.sender is retained deposit(IERC20(stake).balanceOf(msg.sender)); } /// @inheritdoc IGauge function depositFor( address recipient, uint256 amount ) public updateReward(recipient) nonReentrant { /// @dev prevent zero deposits require(amount != 0, ZERO_AMOUNT()); /// @dev pull the stake from the caller _safeTransferFrom(stake, msg.sender, address(this), amount); /// @dev increment the staked supply totalSupply += amount; /// @dev add amount to the recipient balanceOf[recipient] += amount; emit Deposit(recipient, amount); } /// @inheritdoc IGauge function deposit(uint256 amount) public { /// @dev deposit an amount for the caller depositFor(msg.sender, amount); } /// @inheritdoc IGauge function withdrawAll() external { /// @dev withdraw the whole balance of the caller /// @dev msg.sender is retained throughout withdraw(balanceOf[msg.sender]); } /// @inheritdoc IGauge function withdraw( uint256 amount ) public updateReward(msg.sender) nonReentrant { /// @dev prevent zero withdraws require(amount != 0, ZERO_AMOUNT()); /// @dev decrement the totalSupply by the withdrawal amount totalSupply -= amount; /// @dev decrement the amount from the caller's mapping balanceOf[msg.sender] -= amount; /// @dev transfer the stake token to the caller _safeTransfer(stake, msg.sender, amount); emit Withdraw(msg.sender, amount); } /// @inheritdoc IGauge function left(address token) public view returns (uint256) { /// @dev if we are at or past the periodFinish for the token, return 0 if (block.timestamp >= _rewardData[token].periodFinish) return 0; /// @dev calculate the remaining time from periodFinish to current uint256 _remaining = _rewardData[token].periodFinish - block.timestamp; /// @dev return the remaining time, multiplied by the reward rate then scale to precision return (_remaining * _rewardData[token].rewardRate) / PRECISION; } /// @inheritdoc IGauge function whitelistReward(address _reward) external { require(msg.sender == voter, NOT_AUTHORIZED()); /// @dev voter checks for governance whitelist before allowing call tokenWhitelists.add(_reward); emit RewardWhitelisted(_reward, true); } /// @inheritdoc IGauge function removeRewardWhitelist(address _reward) external { require(msg.sender == voter, NOT_AUTHORIZED()); tokenWhitelists.remove(_reward); emit RewardWhitelisted(_reward, false); } /// @inheritdoc IGauge /** * @notice amount must be greater than left() for the token, this is to prevent griefing attacks * @notice notifying rewards is completely permissionless * @notice if nobody registers for a newly added reward for the period it will remain in the contract indefinitely */ function notifyRewardAmount( address token, uint256 amount ) external updateReward(address(0)) nonReentrant { /// @dev prevent notifying the stake token require(token != stake, CANT_NOTIFY_STAKE()); /// @dev do not accept 0 amounts require(amount != 0, ZERO_AMOUNT()); /// @dev ensure the token is whitelisted require(tokenWhitelists.contains(token), NOT_WHITELISTED()); _rewardData[token].rewardPerTokenStored = rewardPerToken(token); if (!isReward[token]) { rewards.push(token); isReward[token] = true; } /// @dev check actual amount transferred for compatibility with fee on transfer tokens. uint256 balanceBefore = IERC20(token).balanceOf(address(this)); _safeTransferFrom(token, msg.sender, address(this), amount); uint256 balanceAfter = IERC20(token).balanceOf(address(this)); amount = balanceAfter - balanceBefore; /// @dev add existing dust amount += dust; if (block.timestamp >= _rewardData[token].periodFinish) { _rewardData[token].rewardRate = (amount * PRECISION) / DURATION; /// @dev account for dust dust = amount - _rewardData[token].rewardRate * DURATION; } else { /// @dev calculate the remaining seconds based on the current timestamp uint256 remaining = _rewardData[token].periodFinish - block.timestamp; /// @dev calculate what is currently leftover until the reward period finishes uint256 _left = remaining * _rewardData[token].rewardRate; /// @dev block DoS require( amount * PRECISION > _left, NOT_GREATER_THAN_REMAINING(amount * PRECISION, _left) ); /// @dev update the rewardRate to include the newly added amount _rewardData[token].rewardRate = (amount * PRECISION + _left) / DURATION; /// @dev account for dust dust = (amount + _left) - (_rewardData[token].rewardRate * DURATION); } /// @dev update the timestamps _rewardData[token].lastUpdateTime = block.timestamp; _rewardData[token].periodFinish = block.timestamp + DURATION; /// @dev check the token balance in this contract uint256 balance = IERC20(token).balanceOf(address(this)); /// @dev ensure it isn't "over-emitting" require( _rewardData[token].rewardRate <= (balance * PRECISION) / DURATION, REWARD_TOO_HIGH() ); emit NotifyReward(msg.sender, token, amount); } function isWhitelisted(address token) public view returns (bool) { return tokenWhitelists.contains(token); } /** internal safe transfer functions */ function _safeTransfer(address token, address to, uint256 value) internal { require( token.code.length > 0, TOKEN_ERROR( token ) /* throw address of the token as a custom error to help with debugging */ ); (bool success, bytes memory data) = token.call( abi.encodeWithSelector(IERC20.transfer.selector, to, value) ); require( success && (data.length == 0 || abi.decode(data, (bool))), TOKEN_ERROR( token ) /* throw address of the token as a custom error to help with debugging */ ); } function _safeTransferFrom( address token, address from, address to, uint256 value ) internal { require( token.code.length > 0, TOKEN_ERROR( token ) /* throw address of the token as a custom error to help with debugging */ ); (bool success, bytes memory data) = token.call( abi.encodeWithSelector( IERC20.transferFrom.selector, from, to, value ) ); require( success && (data.length == 0 || abi.decode(data, (bool))), TOKEN_ERROR( token ) /* throw address of the token as a custom error to help with debugging */ ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; assembly ("memory-safe") { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly ("memory-safe") { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly ("memory-safe") { result := store } return result; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.26; pragma abicoder v2; interface IVoter { error ACTIVE_GAUGE(address gauge); error GAUGE_INACTIVE(address gauge); error ALREADY_WHITELISTED(); error NOT_AUTHORIZED(address caller); error NOT_WHITELISTED(); error NOT_POOL(); error FORBIDDEN(); error NOT_INIT(); error LENGTH_MISMATCH(); error NO_GAUGE(); error ALREADY_DISTRIBUTED(address gauge, uint256 period); error ZERO_VOTE(address pool); error RATIO_TOO_HIGH(); error NOT_GT_ZERO(); error VOTE_UNSUCCESSFUL(); error UNAUTHORIZED(); event GaugeCreated( address indexed gauge, address creator, address feeDistributor, address indexed pool ); event GaugeKilled(address indexed gauge); event GaugeRevived(address indexed gauge); event Voted(address indexed owner, uint256 weight, address indexed pool); event Abstained(address indexed owner, uint256 weight); event Deposit( address indexed lp, address indexed gauge, address indexed owner, uint256 amount ); event Withdraw( address indexed lp, address indexed gauge, address indexed owner, uint256 amount ); event NotifyReward( address indexed sender, address indexed reward, uint256 amount ); event DistributeReward( address indexed sender, address indexed gauge, uint256 amount ); event EmissionsRatio( address indexed caller, uint256 oldRatio, uint256 newRatio ); event NewGovernor(address indexed sender, address indexed governor); event Whitelisted(address indexed whitelister, address indexed token); event WhitelistRevoked( address indexed forbidder, address indexed token, bool status ); event CustomGaugeCreated( address indexed gauge, address creator, address indexed token ); event MainTickSpacingChanged( address indexed token0, address indexed token1, int24 indexed newMainTickSpacing ); /// @notice returns the address of the current governor /// @return _governor address of the governor function governor() external view returns (address _governor); /// @notice the address of the vote module /// @return _voteModule the vote module contract address function voteModule() external view returns (address _voteModule); /// @notice the address of the shadow launcher plugin to enable third party launchers /// @return _launcherPlugin the address of the plugin function launcherPlugin() external view returns (address _launcherPlugin); /// @notice distributes emissions from the minter to the voter /// @param amount the amount of tokens to notify function notifyRewardAmount(uint256 amount) external; /// @notice distributes the emissions for a specific gauge /// @param _gauge the gauge address function distribute(address _gauge) external; /// @notice returns the address of the gauge factory /// @param _gaugeFactory gauge factory address function gaugeFactory() external view returns (address _gaugeFactory); /// @notice returns the address of the feeDistributor factory /// @return _feeDistributorFactory feeDist factory address function feeDistributorFactory() external view returns (address _feeDistributorFactory); /// @notice returns the address of the minter contract /// @return _minter address of the minter function minter() external view returns (address _minter); /// @notice check if the gauge is active for governance use /// @param _gauge address of the gauge /// @return _trueOrFalse if the gauge is alive function isAlive(address _gauge) external view returns (bool _trueOrFalse); /// @notice allows the token to be paired with other whitelisted assets to participate in governance /// @param _token the address of the token function whitelist(address _token) external; /// @notice effectively disqualifies a token from governance /// @param _token the address of the token function revokeWhitelist(address _token) external; /// @notice returns if the address is a gauge /// @param gauge address of the gauge /// @return _trueOrFalse boolean if the address is a gauge function isGauge(address gauge) external view returns (bool _trueOrFalse); /// @notice disable a gauge from governance /// @param _gauge address of the gauge function killGauge(address _gauge) external; /// @notice re-activate a dead gauge /// @param _gauge address of the gauge function reviveGauge(address _gauge) external; /// @notice re-cast a tokenID's votes /// @param owner address of the owner function poke(address owner) external; /// @notice sets the main tickspacing of a token pairing /// @param tokenA address of tokenA /// @param tokenB address of tokenB /// @param tickSpacing the main tickspacing to set to function setMainTickSpacing( address tokenA, address tokenB, int24 tickSpacing ) external; /// @notice create a legacy-type gauge for an arbitrary token /// @param _token 'token' to be used /// @return _arbitraryGauge the address of the new custom gauge function createArbitraryGauge( address _token ) external returns (address _arbitraryGauge); /// @notice returns if the address is a fee distributor /// @param _feeDistributor address of the feeDist /// @return _trueOrFalse if the address is a fee distributor function isFeeDistributor( address _feeDistributor ) external view returns (bool _trueOrFalse); /// @notice returns the address of the emission's token /// @return _emissionsToken emissions token contract address function emissionsToken() external view returns (address _emissionsToken); /// @notice returns the address of the pool's gauge, if any /// @param _pool pool address /// @return _gauge gauge address function gaugeForPool(address _pool) external view returns (address _gauge); /// @notice returns the address of the pool's feeDistributor, if any /// @param _gauge address of the gauge /// @return _feeDistributor address of the pool's feedist function feeDistributorForGauge( address _gauge ) external view returns (address _feeDistributor); /// @notice returns the new toPool that was redirected fromPool /// @param fromPool address of the original pool /// @return toPool the address of the redirected pool function poolRedirect( address fromPool ) external view returns (address toPool); /// @notice returns the gauge address of a CL pool /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @param tickSpacing tickspacing of the pool /// @return gauge address of the gauge function gaugeForClPool( address tokenA, address tokenB, int24 tickSpacing ) external view returns (address gauge); /// @notice returns the array of all tickspacings for the tokenA/tokenB combination /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @return _ts array of all the tickspacings function tickSpacingsForPair( address tokenA, address tokenB ) external view returns (int24[] memory _ts); /// @notice returns the main tickspacing used in the gauge/governance process /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @return _ts the main tickspacing function mainTickSpacingForPair( address tokenA, address tokenB ) external view returns (int24 _ts); /// @notice returns the block.timestamp divided by 1 week in seconds /// @return period the period used for gauges function getPeriod() external view returns (uint256 period); /// @notice cast a vote to direct emissions to gauges and earn incentives /// @param owner address of the owner /// @param _pools the list of pools to vote on /// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs function vote( address owner, address[] calldata _pools, uint256[] calldata _weights ) external; /// @notice reset the vote of an address /// @param owner address of the owner function reset(address owner) external; /// @notice set the governor address /// @param _governor the new governor address function setGovernor(address _governor) external; /// @notice recover stuck emissions /// @param _gauge the gauge address /// @param _period the period function stuckEmissionsRecovery(address _gauge, uint256 _period) external; /// @notice whitelists extra rewards for a gauge /// @param _gauge the gauge to whitelist rewards to /// @param _reward the reward to whitelist function whitelistGaugeRewards(address _gauge, address _reward) external; /// @notice removes a reward from the gauge whitelist /// @param _gauge the gauge to remove the whitelist from /// @param _reward the reward to remove from the whitelist function removeGaugeRewardWhitelist( address _gauge, address _reward ) external; /// @notice creates a legacy gauge for the pool /// @param _pool pool's address /// @return _gauge address of the new gauge function createGauge(address _pool) external returns (address _gauge); /// @notice create a concentrated liquidity gauge /// @param tokenA the address of tokenA /// @param tokenB the address of tokenB /// @param tickSpacing the tickspacing of the pool /// @return _clGauge address of the new gauge function createCLGauge( address tokenA, address tokenB, int24 tickSpacing ) external returns (address _clGauge); /// @notice claim concentrated liquidity gauge rewards for specific NFP token ids /// @param _gauges array of gauges /// @param _tokens two dimensional array for the tokens to claim /// @param _nfpTokenIds two dimensional array for the NFPs function claimClGaugeRewards( address[] calldata _gauges, address[][] calldata _tokens, uint256[][] calldata _nfpTokenIds ) external; /// @notice claim arbitrary rewards from specific feeDists /// @param owner address of the owner /// @param _feeDistributors address of the feeDists /// @param _tokens two dimensional array for the tokens to claim function claimIncentives( address owner, address[] calldata _feeDistributors, address[][] calldata _tokens ) external; /// @notice claim arbitrary rewards from specific gauges /// @param _gauges address of the gauges /// @param _tokens two dimensional array for the tokens to claim function claimRewards( address[] calldata _gauges, address[][] calldata _tokens ) external; /// @notice distribute emissions to a gauge for a specific period /// @param _gauge address of the gauge /// @param _period value of the period function distributeForPeriod(address _gauge, uint256 _period) external; /// @notice attempt distribution of emissions to all gauges function distributeAll() external; /// @notice distribute emissions to gauges by index /// @param startIndex start of the loop /// @param endIndex end of the loop function batchDistributeByIndex( uint256 startIndex, uint256 endIndex ) external; /// @notice returns the votes cast for a tokenID /// @param owner address of the owner /// @return votes an array of votes casted /// @return weights an array of the weights casted per pool function getVotes( address owner, uint256 period ) external view returns (address[] memory votes, uint256[] memory weights); /// @notice returns an array of all the gauges /// @return _gauges the array of gauges function getAllGauges() external view returns (address[] memory _gauges); /// @notice returns an array of all the feeDists /// @return _feeDistributors the array of feeDists function getAllFeeDistributors() external view returns (address[] memory _feeDistributors); /// @notice sets the xShadowRatio default function setGlobalRatio(uint256 _xRatio) external; /// @notice returns the array of all custom/arbitrary pools function getAllCustomPools() external view returns (address[] memory _customPools); /// @notice whether the token is whitelisted in governance function isWhitelisted(address _token) external view returns (bool _tf); /// @notice function for removing malicious or stuffed tokens function removeFeeDistributorReward( address _feeDist, address _token ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
{ "remappings": [ "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/", "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/", "forge-std/=dependencies/forge-std-1.9.4/src/", "permit2/=lib/permit2/", "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/", "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/", "@uniswap/=node_modules/@uniswap/", "base64-sol/=node_modules/base64-sol/", "eth-gas-reporter/=node_modules/eth-gas-reporter/", "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/", "hardhat/=node_modules/hardhat/", "solmate/=node_modules/solmate/" ], "optimizer": { "enabled": true, "runs": 100 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": true, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_pool","type":"address"}],"name":"createGauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastGauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60808060405234601557611e7e908161001a8239f35b5f80fdfe6080806040526004361015610012575f80fd5b5f3560e01c908163a5f4301e1461005d575063b46d346514610032575f80fd5b34610059575f366003190112610059575f546040516001600160a01b039091168152602090f35b5f80fd5b34610059576020366003190112610059576004356001600160a01b0381169081900361005957611d4880830183811067ffffffffffffffff8211176100ec576040928492610101843981523360208201520301905ff080156100e1575f80546001600160a01b0319166001600160a01b039092169182179055604051908152602090f35b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffdfe60c0806040523461011a57604081611d48803803809161001f8285610131565b83398101031261011a576020816100428261003b600495610168565b9201610168565b60015f5560809190915260a081905260405163210ca05d60e01b815292839182906001600160a01b03165afa8015610126575f906100e7575b61008d906001600160a01b031661017c565b50604051611b3f908161020982396080518181816101c0015281816103c9015281816109d401528181610cf6015281816111c40152611762015260a05181818161025c01528181610c200152818161100f01526113b50152f35b506020813d60201161011e575b8161010160209383610131565b8101031261011a5761011561008d91610168565b61007b565b5f80fd5b3d91506100f4565b6040513d5f823e3d90fd5b601f909101601f19168101906001600160401b0382119082101761015457604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361011a57565b805f52600a60205260405f2054155f1461020357600954680100000000000000008110156101545760018101806009558110156101ef577f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af018190556009545f918252600a602052604090912055600190565b634e487b7160e01b5f52603260045260245ffd5b505f9056fe60806040526004361015610011575f80fd5b5f3560e01c80630c96238f1461139a57806318160ddd1461137d578063211dc32d146113515780632e1a7d4d1461121c5780632f4f21e21461103d57806331279d3d14610d755780633692525914610d255780633a4b66f114610ce15780633af32abf14610c9f5780633ca068b614610c4f57806346c96aac14610c0b57806348e5d9f814610b6d5780634d5ce03814610b30578063638634ee14610b0d57806370a0823114610ad55780638003b61414610a2a578063853828b61461082e57806399bcc0521461080b578063b66503cf146102f5578063b6b55f25146102d9578063db89461b14610241578063de5f626814610195578063e688639614610178578063f12297771461014d5763fad9aba31461012c575f80fd5b34610149575f366003190112610149576020600354604051908152f35b5f80fd5b3461014957602036600319011261014957602061017061016b611422565b6117e0565b604051908152f35b34610149575f366003190112610149576020600154604051908152f35b34610149575f366003190112610149576040516370a0823160e01b81523360048201526020816024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa8015610236575f90610202575b61020090611629565b005b506020813d60201161022e575b8161021c60209383611582565b810103126101495761020090516101f7565b3d915061020f565b6040513d5f823e3d90fd5b346101495760203660031901126101495761025a611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b031661029c81611ab9565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f646602060405160018152a2005b633d83866f60e01b5f5260045ffd5b3461014957602036600319011261014957610200600435611629565b346101495760403660031901126101495761030e611422565b602435905f5b6001548110156103b1578061034061032d600193611501565b848060a01b0391549060031b1c166117e0565b61034982611501565b848060a01b0391549060031b1c165f526005602052600360405f20015561038561037282611501565b848060a01b0391549060031b1c166115a4565b61038e82611501565b848060a01b0391549060031b1c165f526005602052600260405f20015501610314565b506103ba611851565b6001600160a01b0381811692907f00000000000000000000000000000000000000000000000000000000000000001683146107fc5780156107ed5761040a835f52600a60205260405f2054151590565b156107de57610418826117e0565b835f526005602052600360405f200155825f52600860205260ff60405f20541615610772575b6040516370a0823160e01b815230600482015290602082602481875afa918215610236575f9261073c575b50610478919230903390611987565b6040516370a0823160e01b8152306004820152602081602481865afa908115610236575f91610708575b506104b9916104b09161144e565b6003549061146e565b5f82815260056020526040902060010154421061064157670de0b6b3a76400008102818104670de0b6b3a764000014821517156105fb575f83815260056020526040902062093a8091829004908190558082029181159183041417156105fb57610523908261144e565b6003555b815f52600560205242600260405f20015562093a8042018042116105fb57825f526005602052600160405f2001556040516370a0823160e01b8152306004820152602081602481865afa908115610236575f9161060f575b50825f52600560205260405f205490670de0b6b3a7640000810290808204670de0b6b3a764000014901517156105fb5762093a809004106105ec576040519081527ff70d5c697de7ea828df48e5c4573cb2194c659f1901f70110c52b066dcf5082660203392a360015f55005b6330f9e1ed60e11b5f5260045ffd5b634e487b7160e01b5f52601160045260245ffd5b90506020813d602011610639575b8161062a60209383611582565b8101031261014957518361057f565b3d915061061d565b815f52600560205261067061065d42600160405f20015461144e565b835f52600560205260405f20549061145b565b670de0b6b3a76400008202828104670de0b6b3a764000014831517156105fb57818111156106f3579062093a806106aa826106be9461146e565b04845f52600560205260405f20558261146e565b825f52600560205260405f205462093a8081029080820462093a8014901517156105fb576106eb9161144e565b600355610527565b6372fc575760e01b5f5260045260245260445ffd5b90506020813d602011610734575b8161072360209383611582565b8101031261014957516104b96104a2565b3d9150610716565b91506020823d60201161076a575b8161075760209383611582565b8101031261014957610478915191610469565b3d915061074a565b600154600160401b8110156107ca578060016107919201600155611501565b81546001600160a01b0360039290921b91821b19169085901b1790555f838152600860205260409020805460ff1916600117905561043e565b634e487b7160e01b5f52604160045260245ffd5b635ffde35f60e11b5f5260045ffd5b630f6fa54560e41b5f5260045ffd5b63c6034fed60e01b5f5260045ffd5b34610149576020366003190112610149576020610170610829611422565b6115c6565b34610149575f36600319011261014957335f52600460205260405f20545f331515905b600154811015610996578061086a61032d600193611501565b61087382611501565b848060a01b0391549060031b1c165f526005602052600360405f200155826108b061089d83611501565b858060a01b0391549060031b1c166115a4565b6108b983611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556108e1575b01610851565b6109036108ed82611501565b903391858060a01b0391549060031b1c1661147b565b335f52600760205260405f2061091883611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561094081611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061097283611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556108db565b8261099f611851565b80156107ed576109b18160025461144e565b600255335f52600460205260405f206109cb82825461144e565b90556109f881337f00000000000000000000000000000000000000000000000000000000000000006118ee565b6040519081527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436460203392a260015f55005b34610149575f366003190112610149576040518060206001549283815201809260015f5260205f20905f5b818110610ab65750505081610a6b910382611582565b604051918291602083019060208452518091526040830191905f5b818110610a94575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610a86565b82546001600160a01b0316845260209093019260019283019201610a55565b34610149576020366003190112610149576001600160a01b03610af6611422565b165f526004602052602060405f2054604051908152f35b34610149576020366003190112610149576020610170610b2b611422565b6115a4565b34610149576020366003190112610149576001600160a01b03610b51611422565b165f526008602052602060ff60405f2054166040519015158152f35b3461014957602036600319011261014957610b86611422565b5f6060604051610b9581611566565b828152826020820152826040820152015260018060a01b03165f526005602052608060405f20604051610bc781611566565b815491828252600181015460208301908152606060036002840154936040860194855201549301928352604051938452516020840152516040830152516060820152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610c68611422565b610c70611438565b6001600160a01b039182165f908152600660209081526040808320949093168252928352819020549051908152f35b34610149576020366003190112610149576020610cd76001600160a01b03610cc5611422565b165f52600a60205260405f2054151590565b6040519015158152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610d3e611422565b610d46611438565b6001600160a01b039182165f908152600760209081526040808320949093168252928352819020549051908152f35b3461014957604036600319011261014957610d8e611422565b6024359067ffffffffffffffff8211610149573660238301121561014957816004013567ffffffffffffffff8111610149576024830192602436918360051b01011161014957906001600160a01b038116908115155f5b600154811015610f155780610dfe61032d600193611501565b610e0782611501565b848060a01b0391549060031b1c165f526005602052600360405f20015582610e3161089d83611501565b610e3a83611501565b858060a01b0391549060031b1c165f526005602052600260405f200155610e62575b01610de5565b610e8284610e6f83611501565b858060a01b0391549060031b1c1661147b565b855f52600760205260405f20610e9783611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610ebf81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154855f52600660205260405f20610ef183611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610e5c565b50509190610f21611851565b803314801561100b575b156102ca575f5b828110610f3f5760015f55005b600190825f52600760205260405f20610f61610f5c83878a611542565b611552565b838060a01b03165f5260205260405f205480610f7f575b5001610f32565b835f52600760205260405f20610f99610f5c84888b611542565b848060a01b03165f526020525f6040812055610fc38187610fbe610f5c868a8d611542565b6118ee565b837f9aa05b3d70a9e3e2f004f039648839560576334fb45c81f91b6db03ad9e2efc9602089610ffc610f5c878b8a8060a01b0394611542565b1693604051908152a386610f78565b50337f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031614610f2b565b3461014957604036600319011261014957611056611422565b6001600160a01b0381168015159160243591905f5b600154811015611188578061108461032d600193611501565b61108d82611501565b848060a01b0391549060031b1c165f526005602052600360405f200155856110b761089d83611501565b6110c083611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556110e8575b0161106b565b6110f583610e6f83611501565b845f52600760205260405f2061110a83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561113281611501565b838060a01b0391549060031b1c165f526005602052600360405f200154845f52600660205260405f2061116483611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556110e2565b8284611192611851565b80156107ed576020816111e87fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c9330337f0000000000000000000000000000000000000000000000000000000000000000611987565b6111f48160025461146e565b600255835f526004825260405f2061120d82825461146e565b9055604051908152a260015f55005b34610149576020366003190112610149576004353315155f5b600154811015610996578061124e61032d600193611501565b61125782611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261128161089d83611501565b61128a83611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556112b2575b01611235565b6112be6108ed82611501565b335f52600760205260405f206112d383611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112fb81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061132d83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112ac565b3461014957604036600319011261014957602061017061136f611422565b611377611438565b9061147b565b34610149575f366003190112610149576020600254604051908152f35b34610149576020366003190112610149576113b3611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b03166113f5816119de565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f64660206040515f8152a2005b600435906001600160a01b038216820361014957565b602435906001600160a01b038216820361014957565b919082039182116105fb57565b818102929181159184041417156105fb57565b919082018092116105fb57565b6114fe9160018060a01b031690815f526004602052670de0b6b3a76400006114d860405f20546114d26114ad856117e0565b865f52600660205260405f2060018060a01b0387165f5260205260405f20549061144e565b9061145b565b04915f52600760205260405f209060018060a01b03165f5260205260405f20549061146e565b90565b6001548110156115195760015f5260205f2001905f90565b634e487b7160e01b5f52603260045260245ffd5b8054821015611519575f5260205f2001905f90565b91908110156115195760051b0190565b356001600160a01b03811681036101495790565b6080810190811067ffffffffffffffff8211176107ca57604052565b90601f8019910116810190811067ffffffffffffffff8211176107ca57604052565b60018060a01b03165f526005602052600160405f200154804210814218021890565b6001600160a01b03165f818152600560205260409020600101544210156116245761162081670de0b6b3a7640000925f52600560205261160d42600160405f20015461144e565b905f52600560205260405f20549061145b565b0490565b505f90565b3315155f5b60015481101561174a578061164761032d600193611501565b61165082611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261167a61089d83611501565b61168383611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556116ab575b0161162e565b6116b76108ed82611501565b335f52600760205260405f206116cc83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116f481611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061172683611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116a5565b5050611754611851565b80156107ed576117868130337f0000000000000000000000000000000000000000000000000000000000000000611987565b6117928160025461146e565b600255335f52600460205260405f206117ac82825461146e565b90556040519081527fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c60203392a260015f55565b600254801561183357906114fe9161182c60018060a01b038316805f52600560205261160d611816600360405f200154956115a4565b825f526005602052600260405f2001549061144e565b049061146e565b506001600160a01b03165f9081526005602052604090206003015490565b60025f54146118605760025f55565b633ee5aeb560e01b5f5260045ffd5b156118775750565b63634e5fc360e11b5f9081526001600160a01b0391909116600452602490fd5b3d156118d1573d9067ffffffffffffffff82116107ca57604051916118c6601f8201601f191660200184611582565b82523d5f602084013e565b606090565b90816020910312610149575180151581036101495790565b905f80916119569461190385803b151561186f565b60405163a9059cbb60e01b602082019081526001600160a01b03909316602482015260448082019290925290815261193c606482611582565b519082855af161194a611897565b81611958575b5061186f565b565b805180159250821561196d575b50505f611950565b61198092506020809183010191016118d6565b5f80611965565b915f9182916119569561199d86803b151561186f565b6040516323b872dd60e01b602082019081526001600160a01b039485166024830152939092166044830152606480830191909152815261193c608482611582565b5f818152600a60205260409020548015611ab3575f1981018181116105fb576009545f198101919082116105fb57818103611a65575b5050506009548015611a51575f1901611a2e81600961152d565b8154905f199060031b1b191690556009555f52600a6020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b611a9d611a76611a8793600961152d565b90549060031b1c928392600961152d565b819391549060031b91821b915f19901b19161790565b90555f52600a60205260405f20555f8080611a14565b50505f90565b805f52600a60205260405f2054155f1461162457600954600160401b8110156107ca57611af2611a87826001859401600955600961152d565b9055600954905f52600a60205260405f205560019056fea26469706673582212209e079c55f705eb7478f164da92f1cef7ec6c42093915eaef269bf572087ed0a764736f6c634300081c0033a26469706673582212201e8b96e4589bf489797804b50d5f16702ec0a226b5392c5754a00ec18055862764736f6c634300081c0033
Deployed Bytecode
0x6080806040526004361015610012575f80fd5b5f3560e01c908163a5f4301e1461005d575063b46d346514610032575f80fd5b34610059575f366003190112610059575f546040516001600160a01b039091168152602090f35b5f80fd5b34610059576020366003190112610059576004356001600160a01b0381169081900361005957611d4880830183811067ffffffffffffffff8211176100ec576040928492610101843981523360208201520301905ff080156100e1575f80546001600160a01b0319166001600160a01b039092169182179055604051908152602090f35b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffdfe60c0806040523461011a57604081611d48803803809161001f8285610131565b83398101031261011a576020816100428261003b600495610168565b9201610168565b60015f5560809190915260a081905260405163210ca05d60e01b815292839182906001600160a01b03165afa8015610126575f906100e7575b61008d906001600160a01b031661017c565b50604051611b3f908161020982396080518181816101c0015281816103c9015281816109d401528181610cf6015281816111c40152611762015260a05181818161025c01528181610c200152818161100f01526113b50152f35b506020813d60201161011e575b8161010160209383610131565b8101031261011a5761011561008d91610168565b61007b565b5f80fd5b3d91506100f4565b6040513d5f823e3d90fd5b601f909101601f19168101906001600160401b0382119082101761015457604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361011a57565b805f52600a60205260405f2054155f1461020357600954680100000000000000008110156101545760018101806009558110156101ef577f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af018190556009545f918252600a602052604090912055600190565b634e487b7160e01b5f52603260045260245ffd5b505f9056fe60806040526004361015610011575f80fd5b5f3560e01c80630c96238f1461139a57806318160ddd1461137d578063211dc32d146113515780632e1a7d4d1461121c5780632f4f21e21461103d57806331279d3d14610d755780633692525914610d255780633a4b66f114610ce15780633af32abf14610c9f5780633ca068b614610c4f57806346c96aac14610c0b57806348e5d9f814610b6d5780634d5ce03814610b30578063638634ee14610b0d57806370a0823114610ad55780638003b61414610a2a578063853828b61461082e57806399bcc0521461080b578063b66503cf146102f5578063b6b55f25146102d9578063db89461b14610241578063de5f626814610195578063e688639614610178578063f12297771461014d5763fad9aba31461012c575f80fd5b34610149575f366003190112610149576020600354604051908152f35b5f80fd5b3461014957602036600319011261014957602061017061016b611422565b6117e0565b604051908152f35b34610149575f366003190112610149576020600154604051908152f35b34610149575f366003190112610149576040516370a0823160e01b81523360048201526020816024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa8015610236575f90610202575b61020090611629565b005b506020813d60201161022e575b8161021c60209383611582565b810103126101495761020090516101f7565b3d915061020f565b6040513d5f823e3d90fd5b346101495760203660031901126101495761025a611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b031661029c81611ab9565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f646602060405160018152a2005b633d83866f60e01b5f5260045ffd5b3461014957602036600319011261014957610200600435611629565b346101495760403660031901126101495761030e611422565b602435905f5b6001548110156103b1578061034061032d600193611501565b848060a01b0391549060031b1c166117e0565b61034982611501565b848060a01b0391549060031b1c165f526005602052600360405f20015561038561037282611501565b848060a01b0391549060031b1c166115a4565b61038e82611501565b848060a01b0391549060031b1c165f526005602052600260405f20015501610314565b506103ba611851565b6001600160a01b0381811692907f00000000000000000000000000000000000000000000000000000000000000001683146107fc5780156107ed5761040a835f52600a60205260405f2054151590565b156107de57610418826117e0565b835f526005602052600360405f200155825f52600860205260ff60405f20541615610772575b6040516370a0823160e01b815230600482015290602082602481875afa918215610236575f9261073c575b50610478919230903390611987565b6040516370a0823160e01b8152306004820152602081602481865afa908115610236575f91610708575b506104b9916104b09161144e565b6003549061146e565b5f82815260056020526040902060010154421061064157670de0b6b3a76400008102818104670de0b6b3a764000014821517156105fb575f83815260056020526040902062093a8091829004908190558082029181159183041417156105fb57610523908261144e565b6003555b815f52600560205242600260405f20015562093a8042018042116105fb57825f526005602052600160405f2001556040516370a0823160e01b8152306004820152602081602481865afa908115610236575f9161060f575b50825f52600560205260405f205490670de0b6b3a7640000810290808204670de0b6b3a764000014901517156105fb5762093a809004106105ec576040519081527ff70d5c697de7ea828df48e5c4573cb2194c659f1901f70110c52b066dcf5082660203392a360015f55005b6330f9e1ed60e11b5f5260045ffd5b634e487b7160e01b5f52601160045260245ffd5b90506020813d602011610639575b8161062a60209383611582565b8101031261014957518361057f565b3d915061061d565b815f52600560205261067061065d42600160405f20015461144e565b835f52600560205260405f20549061145b565b670de0b6b3a76400008202828104670de0b6b3a764000014831517156105fb57818111156106f3579062093a806106aa826106be9461146e565b04845f52600560205260405f20558261146e565b825f52600560205260405f205462093a8081029080820462093a8014901517156105fb576106eb9161144e565b600355610527565b6372fc575760e01b5f5260045260245260445ffd5b90506020813d602011610734575b8161072360209383611582565b8101031261014957516104b96104a2565b3d9150610716565b91506020823d60201161076a575b8161075760209383611582565b8101031261014957610478915191610469565b3d915061074a565b600154600160401b8110156107ca578060016107919201600155611501565b81546001600160a01b0360039290921b91821b19169085901b1790555f838152600860205260409020805460ff1916600117905561043e565b634e487b7160e01b5f52604160045260245ffd5b635ffde35f60e11b5f5260045ffd5b630f6fa54560e41b5f5260045ffd5b63c6034fed60e01b5f5260045ffd5b34610149576020366003190112610149576020610170610829611422565b6115c6565b34610149575f36600319011261014957335f52600460205260405f20545f331515905b600154811015610996578061086a61032d600193611501565b61087382611501565b848060a01b0391549060031b1c165f526005602052600360405f200155826108b061089d83611501565b858060a01b0391549060031b1c166115a4565b6108b983611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556108e1575b01610851565b6109036108ed82611501565b903391858060a01b0391549060031b1c1661147b565b335f52600760205260405f2061091883611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561094081611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061097283611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556108db565b8261099f611851565b80156107ed576109b18160025461144e565b600255335f52600460205260405f206109cb82825461144e565b90556109f881337f00000000000000000000000000000000000000000000000000000000000000006118ee565b6040519081527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436460203392a260015f55005b34610149575f366003190112610149576040518060206001549283815201809260015f5260205f20905f5b818110610ab65750505081610a6b910382611582565b604051918291602083019060208452518091526040830191905f5b818110610a94575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610a86565b82546001600160a01b0316845260209093019260019283019201610a55565b34610149576020366003190112610149576001600160a01b03610af6611422565b165f526004602052602060405f2054604051908152f35b34610149576020366003190112610149576020610170610b2b611422565b6115a4565b34610149576020366003190112610149576001600160a01b03610b51611422565b165f526008602052602060ff60405f2054166040519015158152f35b3461014957602036600319011261014957610b86611422565b5f6060604051610b9581611566565b828152826020820152826040820152015260018060a01b03165f526005602052608060405f20604051610bc781611566565b815491828252600181015460208301908152606060036002840154936040860194855201549301928352604051938452516020840152516040830152516060820152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610c68611422565b610c70611438565b6001600160a01b039182165f908152600660209081526040808320949093168252928352819020549051908152f35b34610149576020366003190112610149576020610cd76001600160a01b03610cc5611422565b165f52600a60205260405f2054151590565b6040519015158152f35b34610149575f366003190112610149576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014957604036600319011261014957610d3e611422565b610d46611438565b6001600160a01b039182165f908152600760209081526040808320949093168252928352819020549051908152f35b3461014957604036600319011261014957610d8e611422565b6024359067ffffffffffffffff8211610149573660238301121561014957816004013567ffffffffffffffff8111610149576024830192602436918360051b01011161014957906001600160a01b038116908115155f5b600154811015610f155780610dfe61032d600193611501565b610e0782611501565b848060a01b0391549060031b1c165f526005602052600360405f20015582610e3161089d83611501565b610e3a83611501565b858060a01b0391549060031b1c165f526005602052600260405f200155610e62575b01610de5565b610e8284610e6f83611501565b858060a01b0391549060031b1c1661147b565b855f52600760205260405f20610e9783611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610ebf81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154855f52600660205260405f20610ef183611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f2055610e5c565b50509190610f21611851565b803314801561100b575b156102ca575f5b828110610f3f5760015f55005b600190825f52600760205260405f20610f61610f5c83878a611542565b611552565b838060a01b03165f5260205260405f205480610f7f575b5001610f32565b835f52600760205260405f20610f99610f5c84888b611542565b848060a01b03165f526020525f6040812055610fc38187610fbe610f5c868a8d611542565b6118ee565b837f9aa05b3d70a9e3e2f004f039648839560576334fb45c81f91b6db03ad9e2efc9602089610ffc610f5c878b8a8060a01b0394611542565b1693604051908152a386610f78565b50337f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031614610f2b565b3461014957604036600319011261014957611056611422565b6001600160a01b0381168015159160243591905f5b600154811015611188578061108461032d600193611501565b61108d82611501565b848060a01b0391549060031b1c165f526005602052600360405f200155856110b761089d83611501565b6110c083611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556110e8575b0161106b565b6110f583610e6f83611501565b845f52600760205260405f2061110a83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f205561113281611501565b838060a01b0391549060031b1c165f526005602052600360405f200154845f52600660205260405f2061116483611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556110e2565b8284611192611851565b80156107ed576020816111e87fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c9330337f0000000000000000000000000000000000000000000000000000000000000000611987565b6111f48160025461146e565b600255835f526004825260405f2061120d82825461146e565b9055604051908152a260015f55005b34610149576020366003190112610149576004353315155f5b600154811015610996578061124e61032d600193611501565b61125782611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261128161089d83611501565b61128a83611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556112b2575b01611235565b6112be6108ed82611501565b335f52600760205260405f206112d383611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112fb81611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061132d83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556112ac565b3461014957604036600319011261014957602061017061136f611422565b611377611438565b9061147b565b34610149575f366003190112610149576020600254604051908152f35b34610149576020366003190112610149576113b3611422565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036102ca576001600160a01b03166113f5816119de565b507ffdb87998d4222b33988d4b5867ff0e474da78ccdb187712d8616aacff010f64660206040515f8152a2005b600435906001600160a01b038216820361014957565b602435906001600160a01b038216820361014957565b919082039182116105fb57565b818102929181159184041417156105fb57565b919082018092116105fb57565b6114fe9160018060a01b031690815f526004602052670de0b6b3a76400006114d860405f20546114d26114ad856117e0565b865f52600660205260405f2060018060a01b0387165f5260205260405f20549061144e565b9061145b565b04915f52600760205260405f209060018060a01b03165f5260205260405f20549061146e565b90565b6001548110156115195760015f5260205f2001905f90565b634e487b7160e01b5f52603260045260245ffd5b8054821015611519575f5260205f2001905f90565b91908110156115195760051b0190565b356001600160a01b03811681036101495790565b6080810190811067ffffffffffffffff8211176107ca57604052565b90601f8019910116810190811067ffffffffffffffff8211176107ca57604052565b60018060a01b03165f526005602052600160405f200154804210814218021890565b6001600160a01b03165f818152600560205260409020600101544210156116245761162081670de0b6b3a7640000925f52600560205261160d42600160405f20015461144e565b905f52600560205260405f20549061145b565b0490565b505f90565b3315155f5b60015481101561174a578061164761032d600193611501565b61165082611501565b848060a01b0391549060031b1c165f526005602052600360405f2001558261167a61089d83611501565b61168383611501565b858060a01b0391549060031b1c165f526005602052600260405f2001556116ab575b0161162e565b6116b76108ed82611501565b335f52600760205260405f206116cc83611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116f481611501565b838060a01b0391549060031b1c165f526005602052600360405f200154335f52600660205260405f2061172683611501565b858060a01b0391549060031b1c16848060a01b03165f5260205260405f20556116a5565b5050611754611851565b80156107ed576117868130337f0000000000000000000000000000000000000000000000000000000000000000611987565b6117928160025461146e565b600255335f52600460205260405f206117ac82825461146e565b90556040519081527fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c60203392a260015f55565b600254801561183357906114fe9161182c60018060a01b038316805f52600560205261160d611816600360405f200154956115a4565b825f526005602052600260405f2001549061144e565b049061146e565b506001600160a01b03165f9081526005602052604090206003015490565b60025f54146118605760025f55565b633ee5aeb560e01b5f5260045ffd5b156118775750565b63634e5fc360e11b5f9081526001600160a01b0391909116600452602490fd5b3d156118d1573d9067ffffffffffffffff82116107ca57604051916118c6601f8201601f191660200184611582565b82523d5f602084013e565b606090565b90816020910312610149575180151581036101495790565b905f80916119569461190385803b151561186f565b60405163a9059cbb60e01b602082019081526001600160a01b03909316602482015260448082019290925290815261193c606482611582565b519082855af161194a611897565b81611958575b5061186f565b565b805180159250821561196d575b50505f611950565b61198092506020809183010191016118d6565b5f80611965565b915f9182916119569561199d86803b151561186f565b6040516323b872dd60e01b602082019081526001600160a01b039485166024830152939092166044830152606480830191909152815261193c608482611582565b5f818152600a60205260409020548015611ab3575f1981018181116105fb576009545f198101919082116105fb57818103611a65575b5050506009548015611a51575f1901611a2e81600961152d565b8154905f199060031b1b191690556009555f52600a6020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b611a9d611a76611a8793600961152d565b90549060031b1c928392600961152d565b819391549060031b91821b915f19901b19161790565b90555f52600a60205260405f20555f8080611a14565b50505f90565b805f52600a60205260405f2054155f1461162457600954600160401b8110156107ca57611af2611a87826001859401600955600961152d565b9055600954905f52600a60205260405f205560019056fea26469706673582212209e079c55f705eb7478f164da92f1cef7ec6c42093915eaef269bf572087ed0a764736f6c634300081c0033a26469706673582212201e8b96e4589bf489797804b50d5f16702ec0a226b5392c5754a00ec18055862764736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.