Sonic Blaze Testnet

Contract

0xB24D0Ae24FDed1C70460E571aB16a3CEBd67B363

Overview

S Balance

Sonic Blaze LogoSonic Blaze LogoSonic Blaze Logo0 S

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x052346d0...334Eff8d5
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
FeeDistributorFactory

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 100 runs

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 13 : FeeDistributorFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import {FeeDistributor} from "./../FeeDistributor.sol";

contract FeeDistributorFactory {
    address public lastFeeDistributor;

    function createFeeDistributor(
        address feeRecipient
    ) external returns (address) {
        lastFeeDistributor = address(
            new FeeDistributor(msg.sender, feeRecipient)
        );

        return lastFeeDistributor;
    }
}

File 2 of 13 : FeeDistributor.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.24;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {IFeeDistributor} from "./interfaces/IFeeDistributor.sol";
import {IVoter} from "./interfaces/IVoter.sol";
import {IVoteModule} from "./interfaces/IVoteModule.sol";
import {ILauncherPlugin} from "./interfaces/ILauncherPlugin.sol";

contract FeeDistributor is IFeeDistributor, ReentrancyGuard {
    using EnumerableSet for EnumerableSet.AddressSet;

    /// @inheritdoc IFeeDistributor
    address public immutable voter;
    /// @inheritdoc IFeeDistributor
    address public immutable voteModule;
    /// @inheritdoc IFeeDistributor
    address public immutable feeRecipient;
    /// @inheritdoc IFeeDistributor
    uint256 public immutable firstPeriod;

    /// @dev fetch through: Voter-> LauncherPlugin
    ILauncherPlugin public immutable plugin;

    /// @inheritdoc IFeeDistributor
    mapping(address owner => uint256 amount) public balanceOf;

    /// @inheritdoc IFeeDistributor
    mapping(uint256 period => uint256 weight) public votes;

    /// @notice period => user => amount
    mapping(uint256 period => mapping(address owner => uint256 weight))
        public userVotes;

    /// @notice period => token => total supply
    mapping(uint256 period => mapping(address token => uint256 amount))
        public rewardSupply;

    /// @notice period => user => token => amount
    mapping(uint256 period => mapping(address owner => mapping(address token => uint256 amount)))
        public userClaimed;

    /// @notice token => user => period
    mapping(address token => mapping(address owner => uint256 period))
        public lastClaimByToken;

    EnumerableSet.AddressSet rewards;

    constructor(address _voter, address _feeRecipient) {
        /// @dev initialize voter
        voter = _voter;
        /// @dev initialize the plugin
        plugin = ILauncherPlugin(IVoter(_voter).launcherPlugin());
        /// @dev fetch and initialize voteModule via voter
        voteModule = IVoter(_voter).voteModule();
        /// @dev set the firstPeriod as the current
        firstPeriod = getPeriod();
        /// @dev initialize the feeRecipient
        feeRecipient = _feeRecipient;
    }
    /// @inheritdoc IFeeDistributor
    function _deposit(uint256 amount, address owner) external {
        /// @dev gate to the voter
        require(msg.sender == voter, NOT_AUTHORIZED());
        /// @dev fetch the next period (voting power slot)
        uint256 nextPeriod = getPeriod() + 1;
        /// @dev fetch the voting "balance" of the owner
        balanceOf[owner] += amount;
        /// @dev add the vote power to the cumulative
        votes[nextPeriod] += amount;
        /// @dev add to the owner's vote mapping
        userVotes[nextPeriod][owner] += amount;

        emit Deposit(owner, amount);
    }
    /// @inheritdoc IFeeDistributor
    function _withdraw(uint256 amount, address owner) external {
        /// @dev gate to the voter
        require(msg.sender == voter, NOT_AUTHORIZED());
        /// @dev fetch the next period (voting power slot)
        uint256 nextPeriod = getPeriod() + 1;
        /// @dev decrement the mapping by withdrawal amount
        balanceOf[owner] -= amount;
        /// @dev check if the owner has any votes cast
        if (userVotes[nextPeriod][owner] > 0) {
            /// @dev if so -- decrement vote by amount
            userVotes[nextPeriod][owner] -= amount;
            /// @dev and decrement cumulative votes
            votes[nextPeriod] -= amount;
        }

        emit Withdraw(owner, amount);
    }
    /// @inheritdoc IFeeDistributor
    /// @dev specific to periods rather than all
    function getPeriodReward(
        uint256 period,
        address owner,
        address token
    ) external nonReentrant {
        /// @dev check that msg.sender is privileged
        require(
            IVoteModule(voteModule).isAdminFor(msg.sender, owner),
            NOT_AUTHORIZED()
        );
        /// @dev claim to msg.sender
        _getReward(period, owner, token, msg.sender);
        lastClaimByToken[token][owner] = period - 1;
    }
    /// @inheritdoc IFeeDistributor
    function getReward(
        address owner,
        address[] memory tokens
    ) external nonReentrant {
        /// @dev check that msg.sender is privileged
        require(
            IVoteModule(voteModule).isAdminFor(msg.sender, owner),
            NOT_AUTHORIZED()
        );
        /// @dev send to msg.sender (IMPORTANT: ensure these privileges are handled appropriately)
        _getAllRewards(owner, tokens, msg.sender);
    }
    /// @inheritdoc IFeeDistributor
    /// @dev used by Voter to allow batched reward claims
    function getRewardForOwner(
        address owner,
        address[] memory tokens
    ) external nonReentrant {
        /// @dev gate to voter
        require(msg.sender == voter, NOT_AUTHORIZED());
        /// @dev call on behalf of owner
        _getAllRewards(owner, tokens, owner);
    }
    /// @inheritdoc IFeeDistributor
    function notifyRewardAmount(
        address token,
        uint256 amount
    ) external nonReentrant {
        /// @dev limit to feeRecipient (feeCollector in CL)
        require(msg.sender == feeRecipient, NOT_AUTHORIZED());
        /// @dev prevent spam
        require(amount != 0, ZERO_AMOUNT());
        /// @dev ensure the token is whitelisted (should never fail since the fees would be pushed)
        require(IVoter(voter).isWhitelisted(token), IVoter.NOT_WHITELISTED());
        /// @dev declare the next period (epoch)
        uint256 nextPeriod = getPeriod() + 1;
        /// @dev if all the prior checks pass, we can add the token to the rewards set
        rewards.add(token);

        /** LAUNCHPAD CONFIGS **/

        /// @dev if part of a launcher system
        if (_enabledLauncherConfig()) {
            /// @dev set config values
            /// @dev this is OK if the configs are not set, as we handle zeroing it out later
            (uint256 _take, address _recipient) = plugin.values(address(this));

            /// @dev 10_000 is the denom of 100%
            uint256 send = (amount * _take) / 10_000;
            /// @dev send fee to launcher recipient
            if (send != 0) {
                _safeTransferFrom(token, msg.sender, _recipient, send);
                /// @dev deduct from voter-earned fees to prevent a shortfall
                amount -= send;
            }
        }

        /** END LAUNCHPAD CONFIGS **/

        /// @dev logic for handling tax tokens via legacy
        /// @dev V3 (CL) does not support tax or non-typical ERC20 implementations so this is null in those cases
        uint256 balanceBefore = IERC20(token).balanceOf(address(this));
        _safeTransferFrom(token, msg.sender, address(this), amount);
        uint256 balanceAfter = IERC20(token).balanceOf(address(this));

        /// @dev only count the amount actually within the contract
        amount = balanceAfter - balanceBefore;
        /// @dev increase rewards for "nextPeriod"
        rewardSupply[nextPeriod][token] += amount;
        /// @dev emit event for fees notified to feeDist
        emit NotifyReward(msg.sender, token, amount, nextPeriod);
    }
    /// @inheritdoc IFeeDistributor
    /// @dev submit voting incentives to the FeeDistributor
    function incentivize(address token, uint256 amount) external nonReentrant {
        /// @dev prevent spam
        require(amount != 0, ZERO_AMOUNT());
        /// @dev ensure whitelisted to prevent garbage from stuffing the arrays
        require(IVoter(voter).isWhitelisted(token), IVoter.NOT_WHITELISTED());
        /// @dev declare the reward period
        uint256 nextPeriod = getPeriod() + 1;
        /// @dev add to the rewards set
        rewards.add(token);

        /// @dev logic for handling tax tokens as bribes
        uint256 balanceBefore = IERC20(token).balanceOf(address(this));
        _safeTransferFrom(token, msg.sender, address(this), amount);
        uint256 balanceAfter = IERC20(token).balanceOf(address(this));

        /// @dev only count the amount actually within the contract
        amount = balanceAfter - balanceBefore;
        /// @dev increase rewards for "nextPeriod"
        rewardSupply[nextPeriod][token] += amount;
        /// @dev emit event for incentives "bribed" to feeDist
        emit VotesIncentivized(msg.sender, token, amount, nextPeriod);
    }

    /// @inheritdoc IFeeDistributor
    /// @dev for the voter to remove spam rewards
    function removeReward(address _token) external {
        /// @dev limit to voter only
        require(msg.sender == voter, NOT_AUTHORIZED());
        /// @dev remove the token from the rewards set
        rewards.remove(_token);
        /// @dev emit the address of the token removed
        emit RewardsRemoved(_token);
    }

    /// @inheritdoc IFeeDistributor
    function getRewardTokens()
        external
        view
        returns (address[] memory _rewards)
    {
        /// @dev return the values from the set
        /// @dev to prevent unbound expansion removeReward() is to be used when necessary
        _rewards = rewards.values();
    }

    /// @inheritdoc IFeeDistributor
    function earned(
        address token,
        address owner
    ) external view returns (uint256 reward) {
        /// @dev fetch the current period
        uint256 currentPeriod = getPeriod();
        /// @dev gather the last claim timestamp or the firstPeriod if no claim yet
        uint256 lastClaim = Math.max(
            lastClaimByToken[token][owner],
            firstPeriod
        );
        /// @dev loop from the lastClaim up to and including the current period
        for (uint256 period = lastClaim; period <= currentPeriod; ++period) {
            /// @dev if there are votes for the period
            if (votes[period] != 0) {
                /// @dev fetch rewardSupply scaled to weight
                reward +=
                    ((rewardSupply[period][token] * userVotes[period][owner]) *
                        1e18) /
                    votes[period] /
                    1e18;
                /// @dev remove already claimed rewards to prevent shortfalls and over-rewarding
                reward -= userClaimed[period][owner][token];
            }
        }
    }

    /// @notice general read function for grabbing the current period (epoch)
    function getPeriod() public view returns (uint256) {
        return (block.timestamp / 1 weeks);
    }

    /// @dev a core internal function for claiming rewards
    function _getReward(
        uint256 period,
        address owner,
        address token,
        address receiver
    ) internal {
        /// @dev prevent claiming from periods that are not yet finalized
        require(period <= getPeriod(), NOT_FINALIZED());
        /// @dev if there are any votes in the period
        if (votes[period] != 0) {
            uint256 _reward = ((rewardSupply[period][token] *
                userVotes[period][owner]) * 1e18) /
                votes[period] /
                1e18;
            /// @dev remove previous claims
            _reward -= userClaimed[period][owner][token];
            /// @dev add the upcoming claim to the mapping preemptively
            userClaimed[period][owner][token] += _reward;

            /// @dev if there exists some rewards after removing previous claims
            if (_reward > 0) {
                _safeTransfer(token, receiver, _reward);
                emit ClaimRewards(period, owner, receiver, token, _reward);
            }
        }
    }

    function _getAllRewards(
        address owner,
        address[] memory tokens,
        address receiver
    ) internal {
        /// @dev fetch the current period
        uint256 currentPeriod = getPeriod();
        /// @dev placeholder
        uint256 lastClaim;
        /// @dev loop through all tokens in the array
        for (uint256 i = 0; i < tokens.length; ++i) {
            /// @dev fetch lastClaim
            lastClaim = Math.max(
                lastClaimByToken[tokens[i]][owner],
                firstPeriod
            );
            /// @dev nested loop starting from the lastClaim to up to and including the current period
            for (
                uint256 period = lastClaim;
                period <= currentPeriod;
                ++period
            ) {
                /// @dev call _getReward per each token
                _getReward(period, owner, tokens[i], receiver);
            }
            /// @dev we set the previous period as the last claim to follow the for-loop scheme
            lastClaimByToken[tokens[i]][owner] = currentPeriod - 1;
        }
    }

    /// @dev internal function for fetching the the current launcher config status from voter
    function _enabledLauncherConfig() internal view returns (bool _enabled) {
        /// @dev if the pool has the launcher configs enabled return true
        _enabled = plugin.launcherPluginEnabled(
            plugin.feeDistToPool(address(this))
        );
    }

    /** internal safe transfer functions */
    function _safeTransfer(address token, address to, uint256 value) internal {
        require(
            token.code.length > 0,
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20.transfer.selector, to, value)
        );
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
    }

    function _safeTransferFrom(
        address token,
        address from,
        address to,
        uint256 value
    ) internal {
        require(
            token.code.length > 0,
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(
                IERC20.transferFrom.selector,
                from,
                to,
                value
            )
        );

        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            TOKEN_ERROR(
                token
            ) /* throw address of the token as a custom error to help with debugging */
        );
    }
}

File 3 of 13 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 4 of 13 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 5 of 13 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 6 of 13 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }
}

File 7 of 13 : IFeeDistributor.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;

interface IFeeDistributor {
    error NOT_AUTHORIZED();
    error ZERO_AMOUNT();
    error NOT_FINALIZED();
    error TOKEN_ERROR(address);

    event Deposit(address owner, uint256 amount);

    event Withdraw(address owner, uint256 amount);

    event NotifyReward(
        address indexed from,
        address indexed reward,
        uint256 amount,
        uint256 period
    );

    event VotesIncentivized(
        address indexed from,
        address indexed reward,
        uint256 amount,
        uint256 period
    );

    event ClaimRewards(
        uint256 period,
        address owner,
        address receiver,
        address reward,
        uint256 amount
    );

    event RewardsRemoved(address _reward);
    /// @notice the address of the voter contract
    function voter() external view returns (address);
    /// @notice the address of the voting module
    function voteModule() external view returns (address);
    /// @notice the address of the feeRecipient contract
    function feeRecipient() external view returns (address);

    /// @notice the first period (epoch) that this contract was deployed
    function firstPeriod() external view returns (uint256);

    /// @notice balance of the voting power for a user
    /// @param owner the owner
    /// @return amount the amount of voting share
    function balanceOf(address owner) external view returns (uint256 amount);

    /// @notice total cumulative amount of voting power per epoch
    /// @param period the period to check
    /// @return weight the amount of total voting power
    function votes(uint256 period) external view returns (uint256 weight);

    /// @notice "internal" function gated to voter to add votes
    /// @dev internal notation inherited from original solidly, kept for continuity
    function _deposit(uint256 amount, address owner) external;
    /// @notice "internal" function gated to voter to remove votes
    /// @dev internal notation inherited from original solidly, kept for continuity
    function _withdraw(uint256 amount, address owner) external;

    /// @notice function to claim rewards on behalf of another
    /// @param owner owner's address
    /// @param tokens an array of the tokens
    function getRewardForOwner(address owner, address[] memory tokens) external;

    /// @notice function for sending fees directly to be claimable (in system where fees are distro'd through the week)
    /// @dev for lumpsum - this would operate similarly to incentivize
    /// @param token the address of the token to send for notifying
    /// @param amount the amount of token to send
    function notifyRewardAmount(address token, uint256 amount) external;

    /// @notice gives an array of reward tokens for the feedist
    /// @return _rewards array of rewards
    function getRewardTokens()
        external
        view
        returns (address[] memory _rewards);

    /// @notice shows the earned incentives in the feedist
    /// @param token the token address to check
    /// @param owner owner's address
    /// @return reward the amount earned/claimable
    function earned(
        address token,
        address owner
    ) external view returns (uint256 reward);

    /// @notice function to submit incentives to voters for the upcoming flip
    /// @param token the address of the token to send for incentivization
    /// @param amount the amount of token to send
    function incentivize(address token, uint256 amount) external;

    /// @notice get the rewards for a specific period
    /// @param owner owner's address
    function getPeriodReward(
        uint256 period,
        address owner,
        address token
    ) external;
    /// @notice get the fees and incentives
    function getReward(address owner, address[] memory tokens) external;

    /// @notice remove a reward from the set
    function removeReward(address _token) external;
}

File 8 of 13 : IVoter.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
pragma abicoder v2;

interface IVoter {
    error ACTIVE_GAUGE(address gauge);

    error GAUGE_INACTIVE(address gauge);

    error ALREADY_WHITELISTED();

    error NOT_AUTHORIZED(address caller);

    error NOT_WHITELISTED();

    error NOT_POOL();

    error FORBIDDEN();

    error NOT_INIT();

    error LENGTH_MISMATCH();

    error NO_GAUGE();

    error ALREADY_DISTRIBUTED(address gauge, uint256 period);

    error ZERO_VOTE(address pool);

    error RATIO_TOO_HIGH();

    error NOT_GT_ZERO();

    error VOTE_UNSUCCESSFUL();

    error UNAUTHORIZED();

    event GaugeCreated(
        address indexed gauge,
        address creator,
        address feeDistributor,
        address indexed pool
    );

    event GaugeKilled(address indexed gauge);

    event GaugeRevived(address indexed gauge);

    event Voted(address indexed owner, uint256 weight, address indexed pool);

    event Abstained(address indexed owner, uint256 weight);

    event Deposit(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event Withdraw(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event NotifyReward(
        address indexed sender,
        address indexed reward,
        uint256 amount
    );

    event DistributeReward(
        address indexed sender,
        address indexed gauge,
        uint256 amount
    );

    event EmissionsRatio(
        address indexed caller,
        uint256 oldRatio,
        uint256 newRatio
    );

    event NewGovernor(address indexed sender, address indexed governor);

    event Whitelisted(address indexed whitelister, address indexed token);

    event WhitelistRevoked(
        address indexed forbidder,
        address indexed token,
        bool status
    );

    event CustomGaugeCreated(
        address indexed gauge,
        address creator,
        address indexed token
    );

    event MainTickSpacingChanged(
        address indexed token0,
        address indexed token1,
        int24 indexed newMainTickSpacing
    );

    /// @notice returns the address of the current governor
    /// @return _governor address of the governor
    function governor() external view returns (address _governor);
    /// @notice the address of the vote module
    /// @return _voteModule the vote module contract address
    function voteModule() external view returns (address _voteModule);

    /// @notice the address of the shadow launcher plugin to enable third party launchers
    /// @return _launcherPlugin the address of the plugin
    function launcherPlugin() external view returns (address _launcherPlugin);

    /// @notice distributes emissions from the minter to the voter
    /// @param amount the amount of tokens to notify
    function notifyRewardAmount(uint256 amount) external;

    /// @notice distributes the emissions for a specific gauge
    /// @param _gauge the gauge address
    function distribute(address _gauge) external;

    /// @notice returns the address of the gauge factory
    /// @param _gaugeFactory gauge factory address
    function gaugeFactory() external view returns (address _gaugeFactory);

    /// @notice returns the address of the feeDistributor factory
    /// @return _feeDistributorFactory feeDist factory address
    function feeDistributorFactory()
        external
        view
        returns (address _feeDistributorFactory);

    /// @notice returns the address of the minter contract
    /// @return _minter address of the minter
    function minter() external view returns (address _minter);

    /// @notice check if the gauge is active for governance use
    /// @param _gauge address of the gauge
    /// @return _trueOrFalse if the gauge is alive
    function isAlive(address _gauge) external view returns (bool _trueOrFalse);

    /// @notice allows the token to be paired with other whitelisted assets to participate in governance
    /// @param _token the address of the token
    function whitelist(address _token) external;

    /// @notice effectively disqualifies a token from governance
    /// @param _token the address of the token
    function revokeWhitelist(address _token) external;

    /// @notice returns if the address is a gauge
    /// @param gauge address of the gauge
    /// @return _trueOrFalse boolean if the address is a gauge
    function isGauge(address gauge) external view returns (bool _trueOrFalse);

    /// @notice disable a gauge from governance
    /// @param _gauge address of the gauge
    function killGauge(address _gauge) external;

    /// @notice re-activate a dead gauge
    /// @param _gauge address of the gauge
    function reviveGauge(address _gauge) external;

    /// @notice re-cast a tokenID's votes
    /// @param owner address of the owner
    function poke(address owner) external;

    /// @notice sets the main tickspacing of a token pairing
    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param tickSpacing the main tickspacing to set to
    function setMainTickSpacing(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external;

    /// @notice create a legacy-type gauge for an arbitrary token
    /// @param _token 'token' to be used
    /// @return _arbitraryGauge the address of the new custom gauge
    function createArbitraryGauge(
        address _token
    ) external returns (address _arbitraryGauge);

    /// @notice returns if the address is a fee distributor
    /// @param _feeDistributor address of the feeDist
    /// @return _trueOrFalse if the address is a fee distributor
    function isFeeDistributor(
        address _feeDistributor
    ) external view returns (bool _trueOrFalse);

    /// @notice returns the address of the emission's token
    /// @return _emissionsToken emissions token contract address
    function emissionsToken() external view returns (address _emissionsToken);

    /// @notice returns the address of the pool's gauge, if any
    /// @param _pool pool address
    /// @return _gauge gauge address
    function gaugeForPool(address _pool) external view returns (address _gauge);

    /// @notice returns the address of the pool's feeDistributor, if any
    /// @param _gauge address of the gauge
    /// @return _feeDistributor address of the pool's feedist
    function feeDistributorForGauge(
        address _gauge
    ) external view returns (address _feeDistributor);

    /// @notice returns the new toPool that was redirected fromPool
    /// @param fromPool address of the original pool
    /// @return toPool the address of the redirected pool
    function poolRedirect(
        address fromPool
    ) external view returns (address toPool);

    /// @notice returns the gauge address of a CL pool
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @param tickSpacing tickspacing of the pool
    /// @return gauge address of the gauge
    function gaugeForClPool(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external view returns (address gauge);

    /// @notice returns the array of all tickspacings for the tokenA/tokenB combination
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts array of all the tickspacings
    function tickSpacingsForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24[] memory _ts);

    /// @notice returns the main tickspacing used in the gauge/governance process
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts the main tickspacing
    function mainTickSpacingForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24 _ts);

    /// @notice returns the block.timestamp divided by 1 week in seconds
    /// @return period the period used for gauges
    function getPeriod() external view returns (uint256 period);

    /// @notice cast a vote to direct emissions to gauges and earn incentives
    /// @param owner address of the owner
    /// @param _pools the list of pools to vote on
    /// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs
    function vote(
        address owner,
        address[] calldata _pools,
        uint256[] calldata _weights
    ) external;

    /// @notice reset the vote of an address
    /// @param owner address of the owner
    function reset(address owner) external;

    /// @notice set the governor address
    /// @param _governor the new governor address
    function setGovernor(address _governor) external;

    /// @notice recover stuck emissions
    /// @param _gauge the gauge address
    /// @param _period the period
    function stuckEmissionsRecovery(address _gauge, uint256 _period) external;

    /// @notice whitelists extra rewards for a gauge
    /// @param _gauge the gauge to whitelist rewards to
    /// @param _reward the reward to whitelist
    function whitelistGaugeRewards(address _gauge, address _reward) external;

    /// @notice removes a reward from the gauge whitelist
    /// @param _gauge the gauge to remove the whitelist from
    /// @param _reward the reward to remove from the whitelist
    function removeGaugeRewardWhitelist(
        address _gauge,
        address _reward
    ) external;

    /// @notice creates a legacy gauge for the pool
    /// @param _pool pool's address
    /// @return _gauge address of the new gauge
    function createGauge(address _pool) external returns (address _gauge);

    /// @notice create a concentrated liquidity gauge
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param tickSpacing the tickspacing of the pool
    /// @return _clGauge address of the new gauge
    function createCLGauge(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external returns (address _clGauge);

    /// @notice claim concentrated liquidity gauge rewards for specific NFP token ids
    /// @param _gauges array of gauges
    /// @param _tokens two dimensional array for the tokens to claim
    /// @param _nfpTokenIds two dimensional array for the NFPs
    function claimClGaugeRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens,
        uint256[][] calldata _nfpTokenIds
    ) external;

    /// @notice claim arbitrary rewards from specific feeDists
    /// @param owner address of the owner
    /// @param _feeDistributors address of the feeDists
    /// @param _tokens two dimensional array for the tokens to claim
    function claimIncentives(
        address owner,
        address[] calldata _feeDistributors,
        address[][] calldata _tokens
    ) external;

    /// @notice claim arbitrary rewards from specific gauges
    /// @param _gauges address of the gauges
    /// @param _tokens two dimensional array for the tokens to claim
    function claimRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens
    ) external;

    /// @notice distribute emissions to a gauge for a specific period
    /// @param _gauge address of the gauge
    /// @param _period value of the period
    function distributeForPeriod(address _gauge, uint256 _period) external;

    /// @notice attempt distribution of emissions to all gauges
    function distributeAll() external;

    /// @notice distribute emissions to gauges by index
    /// @param startIndex start of the loop
    /// @param endIndex end of the loop
    function batchDistributeByIndex(
        uint256 startIndex,
        uint256 endIndex
    ) external;

    /// @notice returns the votes cast for a tokenID
    /// @param owner address of the owner
    /// @return votes an array of votes casted
    /// @return weights an array of the weights casted per pool
    function getVotes(
        address owner,
        uint256 period
    ) external view returns (address[] memory votes, uint256[] memory weights);

    /// @notice returns an array of all the gauges
    /// @return _gauges the array of gauges
    function getAllGauges() external view returns (address[] memory _gauges);

    /// @notice returns an array of all the feeDists
    /// @return _feeDistributors the array of feeDists
    function getAllFeeDistributors()
        external
        view
        returns (address[] memory _feeDistributors);

    /// @notice sets the xShadowRatio default
    function setGlobalRatio(uint256 _xRatio) external;

    /// @notice returns the array of all custom/arbitrary pools
    function getAllCustomPools()
        external
        view
        returns (address[] memory _customPools);

    /// @notice whether the token is whitelisted in governance
    function isWhitelisted(address _token) external view returns (bool _tf);

    /// @notice function for removing malicious or stuffed tokens
    function removeFeeDistributorReward(
        address _feeDist,
        address _token
    ) external;
}

File 9 of 13 : IVoteModule.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IVoteModule {
    /** Custom Errors */

    /// @dev == 0
    error ZERO_AMOUNT();

    /// @dev if address is not xShadow
    error NOT_XSHADOW();

    /// @dev error for when the cooldown period has not been passed yet
    error COOLDOWN_ACTIVE();

    /// @dev error for when you try to deposit or withdraw for someone who isn't the msg.sender
    error NOT_VOTEMODULE();

    /// @dev error for when the caller is not authorized
    error UNAUTHORIZED();

    /** Events */

    event Deposit(address indexed from, uint256 amount);

    event Withdraw(address indexed from, uint256 amount);

    event NotifyReward(address indexed from, uint256 amount);

    event ClaimRewards(address indexed from, uint256 amount);

    event Delegate(
        address indexed delegator,
        address indexed delegatee,
        bool indexed isAdded
    );

    event SetAdmin(
        address indexed owner,
        address indexed operator,
        bool indexed isAdded
    );

    /** Functions */

    function userLastDeposit(
        address user
    ) external view returns (uint256 timestamp);
    function delegates(address) external view returns (address);
    /// @notice mapping for admins for a specific address
    /// @param owner the owner to check against
    /// @return operator the address that is designated as an admin/operator
    function admins(address owner) external view returns (address operator);

    /// @notice returns the last time the reward was modified or periodFinish if the reward has ended
    function lastTimeRewardApplicable() external view returns (uint256 _ltra);

    function earned(address account) external view returns (uint256 _reward);

    /// @notice claims pending rebase rewards
    function getReward() external;

    function rewardPerToken() external view returns (uint256 _rewardPerToken);

    /// @notice deposits all xShadow in the caller's wallet
    function depositAll() external;

    /// @notice deposit a specified amount of xShadow
    function deposit(uint256 amount) external;

    /// @notice withdraw all xShadow
    function withdrawAll() external;

    /// @notice withdraw a specified amount of xShadow
    function withdraw(uint256 amount) external;

    /// @notice check for admin perms
    /// @param operator the address to check
    /// @param owner the owner to check against for permissions
    function isAdminFor(
        address operator,
        address owner
    ) external view returns (bool approved);

    /// @notice check for delegations
    /// @param delegate the address to check
    /// @param owner the owner to check against for permissions
    function isDelegateFor(
        address delegate,
        address owner
    ) external view returns (bool approved);

    /// @notice rewards pending to be distributed for the reward period
    /// @return _left rewards remaining in the period
    function left() external view returns (uint256 _left);

    /// @notice used by the xShadow contract to notify pending rebases
    /// @param amount the amount of Shadow to be notified from exit penalties
    function notifyRewardAmount(uint256 amount) external;

    /// @notice the address of the xShadow token (staking/voting token)
    /// @return _xShadow the address
    function xShadow() external view returns (address _xShadow);

    /// @notice address of the voter contract
    /// @return _voter the voter contract address
    function voter() external view returns (address _voter);

    /// @notice returns the total voting power (equal to total supply in the VoteModule)
    /// @return _totalSupply the total voting power
    function totalSupply() external view returns (uint256 _totalSupply);

    /// @notice last time the rewards system was updated
    function lastUpdateTime() external view returns (uint256 _lastUpdateTime);

    /// @notice rewards per xShadow
    /// @return _rewardPerToken the amount of rewards per xShadow
    function rewardPerTokenStored()
        external
        view
        returns (uint256 _rewardPerToken);

    /// @notice when the 1800 seconds after notifying are up
    function periodFinish() external view returns (uint256 _periodFinish);

    /// @notice calculates the rewards per second
    /// @return _rewardRate the rewards distributed per second
    function rewardRate() external view returns (uint256 _rewardRate);

    /// @notice voting power
    /// @param user the address to check
    /// @return amount the staked balance
    function balanceOf(address user) external view returns (uint256 amount);

    /// @notice rewards per amount of xShadow's staked
    function userRewardPerTokenStored(
        address user
    ) external view returns (uint256 rewardPerToken);

    /// @notice the amount of rewards claimable for the user
    /// @param user the address of the user to check
    /// @return rewards the stored rewards
    function storedRewardsPerUser(
        address user
    ) external view returns (uint256 rewards);

    /// @notice delegate voting perms to another address
    /// @param delegatee who you delegate to
    /// @dev set address(0) to revoke
    function delegate(address delegatee) external;

    /// @notice give admin permissions to a another address
    /// @param operator the address to give administrative perms to
    /// @dev set address(0) to revoke
    function setAdmin(address operator) external;
}

File 10 of 13 : ILauncherPlugin.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.24;

interface ILauncherPlugin {
    error NOT_AUTHORITY();
    error ALREADY_AUTHORITY();
    error NOT_OPERATOR();
    error ALREADY_OPERATOR();
    error NOT_ENABLED();
    error ENABLED();
    error INVALID_TAKE();

    /// @dev struct that holds the configurations of each specific pool
    struct LauncherConfigs {
        uint256 launcherTake;
        address takeRecipient;
    }

    event NewOperator(address indexed _old, address indexed _new);

    event NewAuthority(address indexed _newAuthority);
    event RemovedAuthority(address indexed _previousAuthority);

    event EnabledPool(address indexed pool, string indexed _name);
    event DisabledPool(address indexed pool);
    event MigratedPool(address indexed oldPool, address indexed newPool);
    event Configured(
        address indexed pool,
        uint256 take,
        address indexed recipient
    );

    event Labeled(address indexed authority, string indexed label);

    /// @notice address of the accessHub
    function accessHub() external view returns (address _accessHub);
    /// @notice protocol operator address
    function operator() external view returns (address _operator);

    /// @notice the denominator constant
    function DENOM() external view returns (uint256 _denominator);

    /// @notice whether configs are enabled for a pool
    /// @param _pool address of the pool
    /// @return bool
    function launcherPluginEnabled(address _pool) external view returns (bool);

    /// @notice maps whether an address is an authority or not
    /// @param _who the address to check
    /// @return _is true or false
    function authorityMap(address _who) external view returns (bool _is);

    /// @notice allows migrating the parameters from one pool to the other
    /// @param _oldPool the current address of the pair
    /// @param _newPool the new pool's address
    function migratePool(address _oldPool, address _newPool) external;

    /// @notice fetch the launcher configs if any
    /// @param _pool address of the pool
    /// @return LauncherConfigs the configs
    function poolConfigs(
        address _pool
    ) external view returns (uint256, address);
    /// @notice view functionality to see who is an authority
    function nameOfAuthority(address) external view returns (string memory);

    /// @notice returns the pool address for a feeDist
    /// @param _feeDist address of the feeDist
    /// @return _pool the pool address from the mapping
    function feeDistToPool(
        address _feeDist
    ) external view returns (address _pool);

    /// @notice set launcher configurations for a pool
    /// @param _pool address of the pool
    /// @param _take the fee that goes to the designated recipient
    /// @param _recipient the address that receives the fees
    function setConfigs(
        address _pool,
        uint256 _take,
        address _recipient
    ) external;

    /// @notice enables the pool for LauncherConfigs
    /// @param _pool address of the pool
    function enablePool(address _pool) external;

    /// @notice disables the pool for LauncherConfigs
    /// @dev clears mappings
    /// @param _pool address of the pool
    function disablePool(address _pool) external;

    /// @notice sets a new operator address
    /// @param _newOperator new operator address
    function setOperator(address _newOperator) external;

    /// @notice gives authority to a new contract/address
    /// @param _newAuthority the suggested new authority
    function grantAuthority(address _newAuthority, string calldata) external;

    /// @notice removes authority from a contract/address
    /// @param _oldAuthority the to-be-removed authority
    function revokeAuthority(address _oldAuthority) external;

    /// @notice labels an authority
    function label(address, string calldata) external;

    /// @notice returns the values for the launcherConfig of the specific feeDist
    /// @param _feeDist the address of the feeDist
    /// @return _launcherTake fee amount taken
    /// @return _recipient address that receives the fees
    function values(
        address _feeDist
    ) external view returns (uint256 _launcherTake, address _recipient);
}

File 11 of 13 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 12 of 13 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 13 of 13 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/",
    "forge-std/=dependencies/forge-std-1.9.4/src/",
    "permit2/=lib/permit2/",
    "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/",
    "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@uniswap/=node_modules/@uniswap/",
    "base64-sol/=node_modules/base64-sol/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/",
    "hardhat/=node_modules/hardhat/",
    "solmate/=node_modules/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 100
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"feeRecipient","type":"address"}],"name":"createFeeDistributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastFeeDistributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f3560e01c908163062e631e1461005d5750635d52996a14610032575f80fd5b34610059575f366003190112610059575f546040516001600160a01b039091168152602090f35b5f80fd5b34610059576020366003190112610059576004356001600160a01b0381169081900361005957611a9980830183811067ffffffffffffffff8211176100ec576040928492610101843933825260208201520301905ff080156100e1575f80546001600160a01b0319166001600160a01b039092169182179055604051908152602090f35b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffdfe610120806040523461018157604081611a99803803809161002082856101d9565b8339810103126101815761003f602061003883610210565b9201610210565b60015f5560808290526040516393208a2b60e01b815290916001600160a01b031690602081600481855afa90811561018d575f91610198575b506001600160a01b0316610100526040516385caf28b60e01b815290602090829060049082905afa90811561018d575f9161014f575b5060a05262093a80420460e05260c052604051611874908161022582396080518181816101ab015281816103f901528181610693015281816109ee01528181610bf501528181610c870152610e3d015260a05181818161048a01528181610aff0152610db6015260c0518181816106310152610c39015260e0518181816105e501528181610fa401526113220152610100518181816103b101526106fa0152f35b90506020813d602011610185575b8161016a602093836101d9565b810103126101815761017b90610210565b5f6100ae565b5f80fd5b3d915061015d565b6040513d5f823e3d90fd5b90506020813d6020116101d1575b816101b3602093836101d9565b81010312610181576004916101c9602092610210565b915091610078565b3d91506101a6565b601f909101601f19168101906001600160401b038211908210176101fc57604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036101815756fe60806040526004361015610011575f80fd5b5f3560e01c80631ed24195146110d7578063211dc32d14610f51578063293311ab14610e1e57806331279d3d14610d71578063463cd97014610c685780634690484014610c2457806346c96aac14610be05780635df8133014610bb657806370a0823114610b7e578063716e5f6a14610b2e57806385caf28b14610aea5780638bb28cb514610aa65780639861a67a14610a5d578063a4d5e67c146109d3578063b66503cf14610608578063c4e3a63b146105ce578063c4f59f9b1461052c578063c887d19114610446578063e943da8a146103e0578063ef01df4f1461039c578063f915f982146101535763fe5b3e3b1461010b575f80fd5b3461014f57604036600319011261014f5761012461110d565b6004355f52600360205260405f209060018060a01b03165f52602052602060405f2054604051908152f35b5f80fd5b3461014f57604036600319011261014f5761016c6110f7565b6024356101776112c6565b801561038d57604051633af32abf60e01b81526001600160a01b0380841660048301819052939190602090829060249082907f0000000000000000000000000000000000000000000000000000000000000000165afa9081156102fa575f9161035e575b501561034f5762093a804204916001830180931161033b576101fc846117e9565b506040516370a0823160e01b815230600482015290602082602481885afa9182156102fa575f92610305575b50610237919230903390611473565b6040516370a0823160e01b815230600482015290602082602481875afa80156102fa575f906102c6575b61026b925061128d565b90805f52600460205260405f20835f5260205260405f2061028d838254611280565b905560405191825260208201527f4a1b99824c404164ed567bfb779dbdcd0367cf61723d7f537e4d1c28e63cb88260403392a360015f55005b506020823d6020116102f2575b816102e060209383611123565b8101031261014f5761026b9151610261565b3d91506102d3565b6040513d5f823e3d90fd5b91506020823d602011610333575b8161032060209383611123565b8101031261014f57610237915191610228565b3d9150610313565b634e487b7160e01b5f52601160045260245ffd5b635ffde35f60e11b5f5260045ffd5b610380915060203d602011610386575b6103788183611123565b81019061129a565b846101db565b503d61036e565b630f6fa54560e41b5f5260045ffd5b3461014f575f36600319011261014f576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014f576103ee36611159565b906103f76112c6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316330361043757610431918161130c565b60015f55005b633d83866f60e01b5f5260045ffd5b3461014f5761045436611207565b61045c6112c6565b604051634b41045960e01b81523360048201526001600160a01b0383166024820152602081806044810103817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa9081156102fa575f9161050d575b5015610437576104d433828486611515565b5f19830192831161033b5760018060a01b03165f52600660205260405f209060018060a01b03165f5260205260405f205560015f555f80f35b610526915060203d602011610386576103788183611123565b846104c2565b3461014f575f36600319011261014f576040518060206007549283815201809260075f5260205f20905f5b8181106105b8575050508161056d910382611123565b604051918291602083019060208452518091526040830191905f5b818110610596575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610588565b8254845260209093019260019283019201610557565b3461014f575f36600319011261014f5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b3461014f57604036600319011261014f576106216110f7565b60243561062c6112c6565b9081907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316330361043757811561038d57604051633af32abf60e01b81526001600160a01b0382811660048301819052949190602090829060249082907f0000000000000000000000000000000000000000000000000000000000000000165afa9081156102fa575f916109b4575b501561034f5762093a804204926001840180941161033b576106e4856117e9565b50604051631e8d2e4d60e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169190602081602481865afa9081156102fa575f9161097a575b5060405163219a292560e21b81526001600160a01b039091166004820152602081602481865afa9081156102fa575f9161095b575b506108ab575b50506040516370a0823160e01b815230600482015290602082602481885afa9182156102fa575f92610875575b506107b2919230903390611473565b6040516370a0823160e01b815230600482015290602082602481875afa80156102fa575f90610841575b6107e6925061128d565b90805f52600460205260405f20835f5260205260405f20610808838254611280565b905560405191825260208201527f52977ea98a2220a03ee9ba5cb003ada08d394ea10155483c95dc2dc77a7eb24b60403392a360015f55005b506020823d60201161086d575b8161085b60209383611123565b8101031261014f576107e691516107dc565b3d915061084e565b91506020823d6020116108a3575b8161089060209383611123565b8101031261014f576107b29151916107a3565b3d9150610883565b604080516354fe9fd760e01b815230600482015292839060249082905afa9182156102fa575f905f93610913575b506108e7612710918361126d565b0491826108f5575b50610776565b61090b935082610906913387611473565b61128d565b8480806108ef565b9250506040823d604011610953575b8161092f60409383611123565b8101031261014f576127106108e761094b6020855195016112b2565b9391506108d9565b3d9150610922565b610974915060203d602011610386576103788183611123565b87610770565b90506020813d6020116109ac575b8161099560209383611123565b8101031261014f576109a6906112b2565b8761073b565b3d9150610988565b6109cd915060203d602011610386576103788183611123565b856106c3565b3461014f57602036600319011261014f576109ec6110f7565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610437577ffb48a5e98c18ee78db7b69705ec447f477863f5c91f44870125ed162aeecd92b906020906001600160a01b0316610a538161170e565b50604051908152a1005b3461014f57610a6b36611207565b915f52600560205260405f209060018060a01b03165f5260205260405f209060018060a01b03165f52602052602060405f2054604051908152f35b3461014f57604036600319011261014f57610abf61110d565b6004355f52600460205260405f209060018060a01b03165f52602052602060405f2054604051908152f35b3461014f575f36600319011261014f576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014f57604036600319011261014f57610b476110f7565b610b4f61110d565b6001600160a01b039182165f908152600660209081526040808320949093168252928352819020549051908152f35b3461014f57602036600319011261014f576001600160a01b03610b9f6110f7565b165f526001602052602060405f2054604051908152f35b3461014f57602036600319011261014f576004355f526002602052602060405f2054604051908152f35b3461014f575f36600319011261014f576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014f575f36600319011261014f576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461014f57604036600319011261014f57600435610c8461110d565b907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036104375762093a804204916001830180931161033b577fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c9260018060a01b0382165f52600160205260405f20610d08848254611280565b9055805f52600260205260405f20610d21848254611280565b90555f52600360205260405f2060018060a01b0382165f5260205260405f20610d4b838254611280565b9055604080516001600160a01b039092168252602082019290925290819081015b0390a1005b3461014f57610d7f36611159565b90610d886112c6565b604051634b41045960e01b81523360048201526001600160a01b0382166024820152602081806044810103817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa9081156102fa575f91610dff575b50156104375761043191339161130c565b610e18915060203d602011610386576103788183611123565b83610dee565b3461014f57604036600319011261014f57600435610e3a61110d565b907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036104375762093a804204916001830180931161033b577f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a94243649260018060a01b0382165f52600160205260405f20610ebe84825461128d565b9055805f52600360205260405f2060018060a01b0383165f5260205260405f2054610f08575b50604080516001600160a01b03909216825260208201929092529081908101610d6c565b805f52600360205260405f2060018060a01b0383165f5260205260405f20610f3184825461128d565b90555f52600260205260405f20610f4983825461128d565b905583610ee4565b3461014f57604036600319011261014f57610f6a6110f7565b610f7261110d565b5f9062093a8042049060018060a01b0384165f52600660205260405f2060018060a01b0382165f5260205260405f20547f00000000000000000000000000000000000000000000000000000000000000009081808211911802185b82811115610fe057602084604051908152f35b805f52600260205260405f2054611000575b610ffb9061125f565b610fcd565b92835f52600460205260405f2060018060a01b0386165f5260205261104860405f2054855f52600360205260405f2060018060a01b0385165f5260205260405f20549061126d565b90670de0b6b3a7640000820291808304670de0b6b3a7640000149015171561033b5761109b6110cf91670de0b6b3a7640000611094610ffb95895f52600260205260405f205490611241565b0490611280565b5f8681526005602090815260408083206001600160a01b038881168552908352818420908b1684529091529020549061128d565b939050610ff2565b3461014f575f36600319011261014f57602062093a804204604051908152f35b600435906001600160a01b038216820361014f57565b602435906001600160a01b038216820361014f57565b90601f8019910116810190811067ffffffffffffffff82111761114557604052565b634e487b7160e01b5f52604160045260245ffd5b90604060031983011261014f576004356001600160a01b038116810361014f579160243567ffffffffffffffff811161014f578160238201121561014f5780600401359167ffffffffffffffff8311611145578260051b91604051936111c26020850186611123565b84526024602085019382010191821161014f57602401915b8183106111e75750505090565b82356001600160a01b038116810361014f578152602092830192016111da565b606090600319011261014f57600435906024356001600160a01b038116810361014f57906044356001600160a01b038116810361014f5790565b811561124b570490565b634e487b7160e01b5f52601260045260245ffd5b5f19811461033b5760010190565b8181029291811591840414171561033b57565b9190820180921161033b57565b9190820391821161033b57565b9081602091031261014f5751801515810361014f5790565b51906001600160a01b038216820361014f57565b60025f54146112d55760025f55565b633ee5aeb560e01b5f5260045ffd5b80518210156112f85760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b90929162093a8042045f198101929181841191907f00000000000000000000000000000000000000000000000000000000000000005f5b8851811015611401576001600160a01b0361135e828b6112e4565b51165f52600660205260405f2060018060a01b0387165f526020528460405f20548380821191180283185b858111156113d1575061033b576001906001600160a01b036113ab828c6112e4565b51165f52600660205260405f20828060a01b0388165f526020528760405f205501611343565b6113fa91506113f5856001600160a01b036113ec868f6112e4565b51168a84611515565b61125f565b8590611389565b505050505050509050565b156114145750565b63634e5fc360e11b5f9081526001600160a01b0391909116600452602490fd5b3d1561146e573d9067ffffffffffffffff82116111455760405191611463601f8201601f191660200184611123565b82523d5f602084013e565b606090565b915f9182916114e49561148986803b151561140c565b6040516323b872dd60e01b602082019081526001600160a01b03948516602483015293909216604483015260648083019190915281526114ca608482611123565b519082855af16114d8611434565b816114e6575b5061140c565b565b80518015925082156114fb575b50505f6114de565b61150e925060208091830101910161129a565b5f806114f3565b909162093a80420482116116ea57815f52600260205260405f205461153b575b50505050565b5f8281526004602090815260408083206001600160a01b0385811685529083528184205486855260038452828520918816855292529091205461157d9161126d565b670de0b6b3a7640000810290808204670de0b6b3a7640000149015171561033b57670de0b6b3a76400006115c16115f792855f52600260205260405f205490611241565b5f8581526005602090815260408083206001600160a01b038a81168552908352818420908816845290915290205491900461128d565b90825f52600560205260405f2060018060a01b0385165f5260205260405f2060018060a01b0382165f5260205260405f20611633838254611280565b905581611641575b50611535565b7f1713744d279f608411b42a7c80f3233d1621c0a40b393bf320e1dc85db3eb2c69460a09461167383803b151561140c565b60405163a9059cbb60e01b602082019081526001600160a01b0384166024830152604480830187905282526116b49185915f918291906114ca606482611123565b604080519586525f196001881b019182166020870152918116918501919091521660608301526080820152a15f8080808061163b565b6346dc7e2960e11b5f5260045ffd5b80548210156112f8575f5260205f2001905f90565b5f8181526008602052604090205480156117e3575f19810181811161033b576007545f1981019190821161033b57818103611795575b5050506007548015611781575f190161175e8160076116f9565b8154905f199060031b1b191690556007555f5260086020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b6117cd6117a66117b79360076116f9565b90549060031b1c92839260076116f9565b819391549060031b91821b915f19901b19161790565b90555f52600860205260405f20555f8080611744565b50505f90565b805f52600860205260405f2054155f1461183957600754600160401b811015611145576118226117b782600185940160075560076116f9565b9055600754905f52600860205260405f2055600190565b505f9056fea2646970667358221220d83abdfc18ac21ec9f049dc4b74cbcf35251e80ccc5fe18e2653e532a40c97b164736f6c634300081c0033a26469706673582212201abec1896d9822244631e77451cc0ab4d1c1485aedd6e70543a0f064e0e04af664736f6c634300081c0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.