Source Code
Overview
S Balance
0 S
More Info
ContractCreator
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
ActivePool
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.24; import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol"; import "openzeppelin-contracts/contracts/utils/math/Math.sol"; import "./Dependencies/Constants.sol"; import "./Interfaces/IActivePool.sol"; import "./Interfaces/IAddressesRegistry.sol"; import "./Interfaces/IBoldToken.sol"; import "./Interfaces/IInterestRouter.sol"; import "./Interfaces/IDefaultPool.sol"; /* * The Active Pool holds the collateral and Bold debt (but not Bold tokens) for all active troves. * * When a trove is liquidated, it's Coll and Bold debt are transferred from the Active Pool, to either the * Stability Pool, the Default Pool, or both, depending on the liquidation conditions. * */ contract ActivePool is IActivePool { using SafeERC20 for IERC20; string public constant NAME = "ActivePool"; IERC20 public immutable collToken; address public immutable borrowerOperationsAddress; address public immutable troveManagerAddress; address public immutable defaultPoolAddress; IBoldToken public immutable boldToken; IInterestRouter public immutable interestRouter; IBoldRewardsReceiver public immutable stabilityPool; uint256 internal collBalance; // deposited coll tracker // Aggregate recorded debt tracker. Updated whenever a Trove's debt is touched AND whenever the aggregate pending interest is minted. // "D" in the spec. uint256 public aggRecordedDebt; /* Sum of individual recorded Trove debts weighted by their respective chosen interest rates. * Updated at individual Trove operations. * "S" in the spec. */ uint256 public aggWeightedDebtSum; // Last time at which the aggregate recorded debt and weighted sum were updated uint256 public lastAggUpdateTime; // Timestamp at which branch was shut down. 0 if not shut down. uint256 public shutdownTime; // Aggregate batch fees tracker uint256 public aggBatchManagementFees; /* Sum of individual recorded Trove debts weighted by their respective batch management fees * Updated at individual batched Trove operations. */ uint256 public aggWeightedBatchManagementFeeSum; // Last time at which the aggregate batch fees and weighted sum were updated uint256 public lastAggBatchManagementFeesUpdateTime; // --- Events --- event CollTokenAddressChanged(address _newCollTokenAddress); event BorrowerOperationsAddressChanged(address _newBorrowerOperationsAddress); event TroveManagerAddressChanged(address _newTroveManagerAddress); event DefaultPoolAddressChanged(address _newDefaultPoolAddress); event StabilityPoolAddressChanged(address _newStabilityPoolAddress); event ActivePoolBoldDebtUpdated(uint256 _recordedDebtSum); event ActivePoolCollBalanceUpdated(uint256 _collBalance); constructor(IAddressesRegistry _addressesRegistry) { collToken = _addressesRegistry.collToken(); borrowerOperationsAddress = address(_addressesRegistry.borrowerOperations()); troveManagerAddress = address(_addressesRegistry.troveManager()); stabilityPool = IBoldRewardsReceiver(_addressesRegistry.stabilityPool()); defaultPoolAddress = address(_addressesRegistry.defaultPool()); interestRouter = _addressesRegistry.interestRouter(); boldToken = _addressesRegistry.boldToken(); emit CollTokenAddressChanged(address(collToken)); emit BorrowerOperationsAddressChanged(borrowerOperationsAddress); emit TroveManagerAddressChanged(troveManagerAddress); emit StabilityPoolAddressChanged(address(stabilityPool)); emit DefaultPoolAddressChanged(defaultPoolAddress); // Allow funds movements between Liquity contracts collToken.approve(defaultPoolAddress, type(uint256).max); } // --- Getters for public variables. Required by IPool interface --- /* * Returns the Coll state variable. * *Not necessarily equal to the the contract's raw Coll balance - ether can be forcibly sent to contracts. */ function getCollBalance() external view override returns (uint256) { return collBalance; } function calcPendingAggInterest() public view returns (uint256) { if (shutdownTime != 0) return 0; // We use the ceiling of the division here to ensure positive error, while we use regular floor division // when calculating the interest accrued by individual Troves. // This ensures that `system debt >= sum(trove debt)` always holds, and thus system debt won't turn negative // even if all Trove debt is repaid. The difference should be small and it should scale with the number of // interest minting events. return Math.ceilDiv(aggWeightedDebtSum * (block.timestamp - lastAggUpdateTime), ONE_YEAR * DECIMAL_PRECISION); } function calcPendingSPYield() external view returns (uint256) { return calcPendingAggInterest() * SP_YIELD_SPLIT / DECIMAL_PRECISION; } function calcPendingAggBatchManagementFee() public view returns (uint256) { uint256 periodEnd = shutdownTime != 0 ? shutdownTime : block.timestamp; uint256 periodStart = Math.min(lastAggBatchManagementFeesUpdateTime, periodEnd); return Math.ceilDiv(aggWeightedBatchManagementFeeSum * (periodEnd - periodStart), ONE_YEAR * DECIMAL_PRECISION); } function getNewApproxAvgInterestRateFromTroveChange(TroveChange calldata _troveChange) external view returns (uint256) { // We are ignoring the upfront fee when calculating the approx. avg. interest rate. // This is a simple way to resolve the circularity in: // fee depends on avg. interest rate -> avg. interest rate is weighted by debt -> debt includes fee -> ... assert(_troveChange.upfrontFee == 0); if (shutdownTime != 0) return 0; uint256 newAggRecordedDebt = aggRecordedDebt; newAggRecordedDebt += calcPendingAggInterest(); newAggRecordedDebt += _troveChange.appliedRedistBoldDebtGain; newAggRecordedDebt += _troveChange.debtIncrease; newAggRecordedDebt += _troveChange.batchAccruedManagementFee; newAggRecordedDebt -= _troveChange.debtDecrease; uint256 newAggWeightedDebtSum = aggWeightedDebtSum; newAggWeightedDebtSum += _troveChange.newWeightedRecordedDebt; newAggWeightedDebtSum -= _troveChange.oldWeightedRecordedDebt; // Avoid division by 0 if the first ever borrower tries to borrow 0 BOLD // Borrowing 0 BOLD is not allowed, but our check of debt >= MIN_DEBT happens _after_ calculating the upfront // fee, which involves getting the new approx. avg. interest rate return newAggRecordedDebt > 0 ? newAggWeightedDebtSum / newAggRecordedDebt : 0; } // Returns sum of agg.recorded debt plus agg. pending interest. Excludes pending redist. gains. function getBoldDebt() external view returns (uint256) { return aggRecordedDebt + calcPendingAggInterest() + aggBatchManagementFees + calcPendingAggBatchManagementFee(); } // --- Pool functionality --- function sendColl(address _account, uint256 _amount) external override { _requireCallerIsBOorTroveMorSP(); _accountForSendColl(_amount); collToken.safeTransfer(_account, _amount); } function sendCollToDefaultPool(uint256 _amount) external override { _requireCallerIsTroveManager(); _accountForSendColl(_amount); IDefaultPool(defaultPoolAddress).receiveColl(_amount); } function _accountForSendColl(uint256 _amount) internal { uint256 newCollBalance = collBalance - _amount; collBalance = newCollBalance; emit ActivePoolCollBalanceUpdated(newCollBalance); } function receiveColl(uint256 _amount) external { _requireCallerIsBorrowerOperationsOrDefaultPool(); _accountForReceivedColl(_amount); // Pull Coll tokens from sender collToken.safeTransferFrom(msg.sender, address(this), _amount); } function accountForReceivedColl(uint256 _amount) public { _requireCallerIsBorrowerOperationsOrDefaultPool(); _accountForReceivedColl(_amount); } function _accountForReceivedColl(uint256 _amount) internal { uint256 newCollBalance = collBalance + _amount; collBalance = newCollBalance; emit ActivePoolCollBalanceUpdated(newCollBalance); } // --- Aggregate interest operations --- // This function is called inside all state-changing user ops: borrower ops, liquidations, redemptions and SP deposits/withdrawals. // Some user ops trigger debt changes to Trove(s), in which case _troveDebtChange will be non-zero. // The aggregate recorded debt is incremented by the aggregate pending interest, plus the net Trove debt change. // The net Trove debt change consists of the sum of a) any debt issued/repaid and b) any redistribution debt gain applied in the encapsulating operation. // It does *not* include the Trove's individual accrued interest - this gets accounted for in the aggregate accrued interest. // The net Trove debt change could be positive or negative in a repayment (depending on whether its redistribution gain or repayment amount is larger), // so this function accepts both the increase and the decrease to avoid using (and converting to/from) signed ints. function mintAggInterestAndAccountForTroveChange(TroveChange calldata _troveChange, address _batchAddress) external { _requireCallerIsBOorTroveM(); // Batch management fees if (_batchAddress != address(0)) { _mintBatchManagementFeeAndAccountForChange(_troveChange, _batchAddress); } // Do the arithmetic in 2 steps here to avoid underflow from the decrease uint256 newAggRecordedDebt = aggRecordedDebt; // 1 SLOAD newAggRecordedDebt += _mintAggInterest(_troveChange.upfrontFee); // adds minted agg. interest + upfront fee newAggRecordedDebt += _troveChange.appliedRedistBoldDebtGain; newAggRecordedDebt += _troveChange.debtIncrease; newAggRecordedDebt -= _troveChange.debtDecrease; aggRecordedDebt = newAggRecordedDebt; // 1 SSTORE // assert(aggRecordedDebt >= 0) // This should never be negative. If all redistribution gians and all aggregate interest was applied // and all Trove debts were repaid, it should become 0. // Do the arithmetic in 2 steps here to avoid underflow from the decrease uint256 newAggWeightedDebtSum = aggWeightedDebtSum; // 1 SLOAD newAggWeightedDebtSum += _troveChange.newWeightedRecordedDebt; newAggWeightedDebtSum -= _troveChange.oldWeightedRecordedDebt; aggWeightedDebtSum = newAggWeightedDebtSum; // 1 SSTORE } function mintAggInterest() external override { _requireCallerIsBOorSP(); aggRecordedDebt += _mintAggInterest(0); } function _mintAggInterest(uint256 _upfrontFee) internal returns (uint256 mintedAmount) { mintedAmount = calcPendingAggInterest() + _upfrontFee; // Mint part of the BOLD interest to the SP and part to the router for LPs. if (mintedAmount > 0) { uint256 spYield = SP_YIELD_SPLIT * mintedAmount / DECIMAL_PRECISION; uint256 remainderToLPs = mintedAmount - spYield; boldToken.mint(address(interestRouter), remainderToLPs); if (spYield > 0) { boldToken.mint(address(stabilityPool), spYield); stabilityPool.triggerBoldRewards(spYield); } } lastAggUpdateTime = block.timestamp; } function mintBatchManagementFeeAndAccountForChange(TroveChange calldata _troveChange, address _batchAddress) external override { _requireCallerIsTroveManager(); _mintBatchManagementFeeAndAccountForChange(_troveChange, _batchAddress); } function _mintBatchManagementFeeAndAccountForChange(TroveChange memory _troveChange, address _batchAddress) internal { aggRecordedDebt += _troveChange.batchAccruedManagementFee; // Do the arithmetic in 2 steps here to avoid underflow from the decrease uint256 newAggBatchManagementFees = aggBatchManagementFees; // 1 SLOAD newAggBatchManagementFees += calcPendingAggBatchManagementFee(); newAggBatchManagementFees -= _troveChange.batchAccruedManagementFee; aggBatchManagementFees = newAggBatchManagementFees; // 1 SSTORE // Do the arithmetic in 2 steps here to avoid underflow from the decrease uint256 newAggWeightedBatchManagementFeeSum = aggWeightedBatchManagementFeeSum; // 1 SLOAD newAggWeightedBatchManagementFeeSum += _troveChange.newWeightedRecordedBatchManagementFee; newAggWeightedBatchManagementFeeSum -= _troveChange.oldWeightedRecordedBatchManagementFee; aggWeightedBatchManagementFeeSum = newAggWeightedBatchManagementFeeSum; // 1 SSTORE // mint fee to batch address if (_troveChange.batchAccruedManagementFee > 0) { boldToken.mint(_batchAddress, _troveChange.batchAccruedManagementFee); } lastAggBatchManagementFeesUpdateTime = block.timestamp; } // --- Shutdown --- function setShutdownFlag() external { _requireCallerIsTroveManager(); shutdownTime = block.timestamp; } function hasBeenShutDown() external view returns (bool) { return shutdownTime != 0; } // --- 'require' functions --- function _requireCallerIsBorrowerOperationsOrDefaultPool() internal view { require( msg.sender == borrowerOperationsAddress || msg.sender == defaultPoolAddress, "ActivePool: Caller is neither BO nor Default Pool" ); } function _requireCallerIsBOorTroveMorSP() internal view { require( msg.sender == borrowerOperationsAddress || msg.sender == troveManagerAddress || msg.sender == address(stabilityPool), "ActivePool: Caller is neither BorrowerOperations nor TroveManager nor StabilityPool" ); } function _requireCallerIsBOorSP() internal view { require( msg.sender == borrowerOperationsAddress || msg.sender == address(stabilityPool), "ActivePool: Caller is not BorrowerOperations nor StabilityPool" ); } function _requireCallerIsBOorTroveM() internal view { require( msg.sender == borrowerOperationsAddress || msg.sender == troveManagerAddress, "ActivePool: Caller is neither BorrowerOperations nor TroveManager" ); } function _requireCallerIsTroveManager() internal view { require(msg.sender == troveManagerAddress, "ActivePool: Caller is not TroveManager"); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.24; address constant ZERO_ADDRESS = address(0); uint256 constant MAX_UINT256 = type(uint256).max; uint256 constant DECIMAL_PRECISION = 1e18; uint256 constant _100pct = DECIMAL_PRECISION; uint256 constant _1pct = DECIMAL_PRECISION / 100; // Amount of ETH to be locked in gas pool on opening troves uint256 constant ETH_GAS_COMPENSATION = 0.0375 ether; // Fraction of collateral awarded to liquidator uint256 constant COLL_GAS_COMPENSATION_DIVISOR = 200; // dividing by 200 yields 0.5% uint256 constant COLL_GAS_COMPENSATION_CAP = 2 ether; // Max coll gas compensation capped at 2 ETH // Minimum amount of net Bold debt a trove must have uint256 constant MIN_DEBT = 2000e18; uint256 constant MIN_ANNUAL_INTEREST_RATE = _1pct / 2; // 0.5% uint256 constant MAX_ANNUAL_INTEREST_RATE = _100pct; // Batch management params uint128 constant MAX_ANNUAL_BATCH_MANAGEMENT_FEE = uint128(_100pct); uint128 constant MIN_INTEREST_RATE_CHANGE_PERIOD = 1 seconds; // prevents more than one adjustment per block uint256 constant REDEMPTION_FEE_FLOOR = _1pct / 2; // 0.5% // For the debt / shares ratio to increase by a factor 1e9 // at a average annual debt increase (compounded interest + fees) of 10%, it would take more than 217 years (log(1e9)/log(1.1)) // at a average annual debt increase (compounded interest + fees) of 50%, it would take more than 51 years (log(1e9)/log(1.5)) // The increase pace could be forced to be higher through an inflation attack, // but precisely the fact that we have this max value now prevents the attack uint256 constant MAX_BATCH_SHARES_RATIO = 1e9; // Half-life of 12h. 12h = 720 min // (1/2) = d^720 => d = (1/2)^(1/720) uint256 constant REDEMPTION_MINUTE_DECAY_FACTOR = 999037758833783000; // BETA: 18 digit decimal. Parameter by which to divide the redeemed fraction, in order to calc the new base rate from a redemption. // Corresponds to (1 / ALPHA) in the white paper. uint256 constant REDEMPTION_BETA = 2; // To prevent redemptions unless Bold depegs below 0.95 and allow the system to take off uint256 constant INITIAL_BASE_RATE = 5 * _1pct - REDEMPTION_FEE_FLOOR; // 5% initial redemption rate // Discount to be used once the shutdown thas been triggered uint256 constant URGENT_REDEMPTION_BONUS = 1e16; // 1% uint256 constant ONE_MINUTE = 1 minutes; uint256 constant ONE_YEAR = 365 days; uint256 constant UPFRONT_INTEREST_PERIOD = 7 days; uint256 constant INTEREST_RATE_ADJ_COOLDOWN = 3 days; uint256 constant SP_YIELD_SPLIT = 72 * _1pct; // 72% // Dummy contract that lets legacy Hardhat tests query some of the constants contract Constants { uint256 public constant _ETH_GAS_COMPENSATION = ETH_GAS_COMPENSATION; uint256 public constant _MIN_DEBT = MIN_DEBT; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IInterestRouter.sol"; import "./IBoldRewardsReceiver.sol"; import "../Types/TroveChange.sol"; interface IActivePool { function defaultPoolAddress() external view returns (address); function borrowerOperationsAddress() external view returns (address); function troveManagerAddress() external view returns (address); function interestRouter() external view returns (IInterestRouter); // We avoid IStabilityPool here in order to prevent creating a dependency cycle that would break flattening function stabilityPool() external view returns (IBoldRewardsReceiver); function getCollBalance() external view returns (uint256); function getBoldDebt() external view returns (uint256); function lastAggUpdateTime() external view returns (uint256); function aggRecordedDebt() external view returns (uint256); function aggWeightedDebtSum() external view returns (uint256); function aggBatchManagementFees() external view returns (uint256); function aggWeightedBatchManagementFeeSum() external view returns (uint256); function calcPendingAggInterest() external view returns (uint256); function calcPendingSPYield() external view returns (uint256); function calcPendingAggBatchManagementFee() external view returns (uint256); function getNewApproxAvgInterestRateFromTroveChange(TroveChange calldata _troveChange) external view returns (uint256); function mintAggInterest() external; function mintAggInterestAndAccountForTroveChange(TroveChange calldata _troveChange, address _batchManager) external; function mintBatchManagementFeeAndAccountForChange(TroveChange calldata _troveChange, address _batchAddress) external; function setShutdownFlag() external; function hasBeenShutDown() external view returns (bool); function shutdownTime() external view returns (uint256); function sendColl(address _account, uint256 _amount) external; function sendCollToDefaultPool(uint256 _amount) external; function receiveColl(uint256 _amount) external; function accountForReceivedColl(uint256 _amount) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IActivePool.sol"; import "./IBoldToken.sol"; import "./IBorrowerOperations.sol"; import "./ICollSurplusPool.sol"; import "./IDefaultPool.sol"; import "./IHintHelpers.sol"; import "./IMultiTroveGetter.sol"; import "./ISortedTroves.sol"; import "./IStabilityPool.sol"; import "./ITroveManager.sol"; import "./ITroveNFT.sol"; import {IMetadataNFT} from "../NFTMetadata/MetadataNFT.sol"; import "./ICollateralRegistry.sol"; import "./IInterestRouter.sol"; import "./IPriceFeed.sol"; interface IAddressesRegistry { struct AddressVars { IERC20Metadata collToken; IBorrowerOperations borrowerOperations; ITroveManager troveManager; ITroveNFT troveNFT; IMetadataNFT metadataNFT; IStabilityPool stabilityPool; IPriceFeed priceFeed; IActivePool activePool; IDefaultPool defaultPool; address gasPoolAddress; ICollSurplusPool collSurplusPool; ISortedTroves sortedTroves; IInterestRouter interestRouter; IHintHelpers hintHelpers; IMultiTroveGetter multiTroveGetter; ICollateralRegistry collateralRegistry; IBoldToken boldToken; IWETH WETH; } function CCR() external returns (uint256); function SCR() external returns (uint256); function MCR() external returns (uint256); function LIQUIDATION_PENALTY_SP() external returns (uint256); function LIQUIDATION_PENALTY_REDISTRIBUTION() external returns (uint256); function collToken() external view returns (IERC20Metadata); function borrowerOperations() external view returns (IBorrowerOperations); function troveManager() external view returns (ITroveManager); function troveNFT() external view returns (ITroveNFT); function metadataNFT() external view returns (IMetadataNFT); function stabilityPool() external view returns (IStabilityPool); function priceFeed() external view returns (IPriceFeed); function activePool() external view returns (IActivePool); function defaultPool() external view returns (IDefaultPool); function gasPoolAddress() external view returns (address); function collSurplusPool() external view returns (ICollSurplusPool); function sortedTroves() external view returns (ISortedTroves); function interestRouter() external view returns (IInterestRouter); function hintHelpers() external view returns (IHintHelpers); function multiTroveGetter() external view returns (IMultiTroveGetter); function collateralRegistry() external view returns (ICollateralRegistry); function boldToken() external view returns (IBoldToken); function WETH() external returns (IWETH); function setAddresses(AddressVars memory _vars) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IERC20Metadata} from "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {IERC5267} from "openzeppelin-contracts/contracts/interfaces/IERC5267.sol"; interface IBoldToken is IERC20Metadata, IERC5267 { function setBranchAddresses( address _troveManagerAddress, address _stabilityPoolAddress, address _borrowerOperationsAddress, address _activePoolAddress ) external; function setCollateralRegistry(address _collateralRegistryAddress) external; function mint(address _account, uint256 _amount) external; function burn(address _account, uint256 _amount) external; function sendToPool(address _sender, address poolAddress, uint256 _amount) external; function returnFromPool(address poolAddress, address user, uint256 _amount) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IInterestRouter { // Currently the Interest Router doesn’t need any specific function }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IDefaultPool { function troveManagerAddress() external view returns (address); function activePoolAddress() external view returns (address); // --- Functions --- function getCollBalance() external view returns (uint256); function getBoldDebt() external view returns (uint256); function sendCollToActivePool(uint256 _amount) external; function receiveColl(uint256 _amount) external; function increaseBoldDebt(uint256 _amount) external; function decreaseBoldDebt(uint256 _amount) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IBoldRewardsReceiver { function triggerBoldRewards(uint256 _boldYield) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; struct TroveChange { uint256 appliedRedistBoldDebtGain; uint256 appliedRedistCollGain; uint256 collIncrease; uint256 collDecrease; uint256 debtIncrease; uint256 debtDecrease; uint256 newWeightedRecordedDebt; uint256 oldWeightedRecordedDebt; uint256 upfrontFee; uint256 batchAccruedManagementFee; uint256 newWeightedRecordedBatchManagementFee; uint256 oldWeightedRecordedBatchManagementFee; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./ILiquityBase.sol"; import "./IAddRemoveManagers.sol"; import "./IBoldToken.sol"; import "./IPriceFeed.sol"; import "./ISortedTroves.sol"; import "./ITroveManager.sol"; import "./IWETH.sol"; // Common interface for the Borrower Operations. interface IBorrowerOperations is ILiquityBase, IAddRemoveManagers { function CCR() external view returns (uint256); function MCR() external view returns (uint256); function SCR() external view returns (uint256); function openTrove( address _owner, uint256 _ownerIndex, uint256 _ETHAmount, uint256 _boldAmount, uint256 _upperHint, uint256 _lowerHint, uint256 _annualInterestRate, uint256 _maxUpfrontFee, address _addManager, address _removeManager, address _receiver ) external returns (uint256); struct OpenTroveAndJoinInterestBatchManagerParams { address owner; uint256 ownerIndex; uint256 collAmount; uint256 boldAmount; uint256 upperHint; uint256 lowerHint; address interestBatchManager; uint256 maxUpfrontFee; address addManager; address removeManager; address receiver; } function openTroveAndJoinInterestBatchManager(OpenTroveAndJoinInterestBatchManagerParams calldata _params) external returns (uint256); function addColl(uint256 _troveId, uint256 _ETHAmount) external; function withdrawColl(uint256 _troveId, uint256 _amount) external; function withdrawBold(uint256 _troveId, uint256 _amount, uint256 _maxUpfrontFee) external; function repayBold(uint256 _troveId, uint256 _amount) external; function closeTrove(uint256 _troveId) external; function adjustTrove( uint256 _troveId, uint256 _collChange, bool _isCollIncrease, uint256 _debtChange, bool isDebtIncrease, uint256 _maxUpfrontFee ) external; function adjustZombieTrove( uint256 _troveId, uint256 _collChange, bool _isCollIncrease, uint256 _boldChange, bool _isDebtIncrease, uint256 _upperHint, uint256 _lowerHint, uint256 _maxUpfrontFee ) external; function adjustTroveInterestRate( uint256 _troveId, uint256 _newAnnualInterestRate, uint256 _upperHint, uint256 _lowerHint, uint256 _maxUpfrontFee ) external; function applyPendingDebt(uint256 _troveId, uint256 _lowerHint, uint256 _upperHint) external; function onLiquidateTrove(uint256 _troveId) external; function claimCollateral() external; function hasBeenShutDown() external view returns (bool); function shutdown() external; function shutdownFromOracleFailure() external; function checkBatchManagerExists(address _batchMananger) external view returns (bool); // -- individual delegation -- struct InterestIndividualDelegate { address account; uint128 minInterestRate; uint128 maxInterestRate; uint256 minInterestRateChangePeriod; } function getInterestIndividualDelegateOf(uint256 _troveId) external view returns (InterestIndividualDelegate memory); function setInterestIndividualDelegate( uint256 _troveId, address _delegate, uint128 _minInterestRate, uint128 _maxInterestRate, // only needed if trove was previously in a batch: uint256 _newAnnualInterestRate, uint256 _upperHint, uint256 _lowerHint, uint256 _maxUpfrontFee, uint256 _minInterestRateChangePeriod ) external; function removeInterestIndividualDelegate(uint256 _troveId) external; // -- batches -- struct InterestBatchManager { uint128 minInterestRate; uint128 maxInterestRate; uint256 minInterestRateChangePeriod; } function registerBatchManager( uint128 minInterestRate, uint128 maxInterestRate, uint128 currentInterestRate, uint128 fee, uint128 minInterestRateChangePeriod ) external; function lowerBatchManagementFee(uint256 _newAnnualFee) external; function setBatchManagerAnnualInterestRate( uint128 _newAnnualInterestRate, uint256 _upperHint, uint256 _lowerHint, uint256 _maxUpfrontFee ) external; function interestBatchManagerOf(uint256 _troveId) external view returns (address); function getInterestBatchManager(address _account) external view returns (InterestBatchManager memory); function setInterestBatchManager( uint256 _troveId, address _newBatchManager, uint256 _upperHint, uint256 _lowerHint, uint256 _maxUpfrontFee ) external; function removeFromBatch( uint256 _troveId, uint256 _newAnnualInterestRate, uint256 _upperHint, uint256 _lowerHint, uint256 _maxUpfrontFee ) external; function switchBatchManager( uint256 _troveId, uint256 _removeUpperHint, uint256 _removeLowerHint, address _newBatchManager, uint256 _addUpperHint, uint256 _addLowerHint, uint256 _maxUpfrontFee ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface ICollSurplusPool { function getCollBalance() external view returns (uint256); function getCollateral(address _account) external view returns (uint256); function accountSurplus(address _account, uint256 _amount) external; function claimColl(address _account) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IHintHelpers { function getApproxHint(uint256 _collIndex, uint256 _interestRate, uint256 _numTrials, uint256 _inputRandomSeed) external view returns (uint256 hintId, uint256 diff, uint256 latestRandomSeed); function predictOpenTroveUpfrontFee(uint256 _collIndex, uint256 _borrowedAmount, uint256 _interestRate) external view returns (uint256); function predictAdjustInterestRateUpfrontFee(uint256 _collIndex, uint256 _troveId, uint256 _newInterestRate) external view returns (uint256); function forcePredictAdjustInterestRateUpfrontFee(uint256 _collIndex, uint256 _troveId, uint256 _newInterestRate) external view returns (uint256); function predictAdjustTroveUpfrontFee(uint256 _collIndex, uint256 _troveId, uint256 _debtIncrease) external view returns (uint256); function predictAdjustBatchInterestRateUpfrontFee( uint256 _collIndex, address _batchAddress, uint256 _newInterestRate ) external view returns (uint256); function predictJoinBatchInterestRateUpfrontFee(uint256 _collIndex, uint256 _troveId, address _batchAddress) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IMultiTroveGetter { struct CombinedTroveData { uint256 id; uint256 debt; uint256 coll; uint256 stake; uint256 annualInterestRate; uint256 lastDebtUpdateTime; uint256 lastInterestRateAdjTime; address interestBatchManager; uint256 batchDebtShares; uint256 batchCollShares; uint256 snapshotETH; uint256 snapshotBoldDebt; } struct DebtPerInterestRate { address interestBatchManager; uint256 interestRate; uint256 debt; } function getMultipleSortedTroves(uint256 _collIndex, int256 _startIdx, uint256 _count) external view returns (CombinedTroveData[] memory _troves); function getDebtPerInterestRateAscending(uint256 _collIndex, uint256 _startId, uint256 _maxIterations) external view returns (DebtPerInterestRate[] memory, uint256 currId); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./ITroveManager.sol"; import {BatchId, BATCH_ID_ZERO} from "../Types/BatchId.sol"; interface ISortedTroves { // -- Mutating functions (permissioned) -- function insert(uint256 _id, uint256 _annualInterestRate, uint256 _prevId, uint256 _nextId) external; function insertIntoBatch( uint256 _troveId, BatchId _batchId, uint256 _annualInterestRate, uint256 _prevId, uint256 _nextId ) external; function remove(uint256 _id) external; function removeFromBatch(uint256 _id) external; function reInsert(uint256 _id, uint256 _newAnnualInterestRate, uint256 _prevId, uint256 _nextId) external; function reInsertBatch(BatchId _id, uint256 _newAnnualInterestRate, uint256 _prevId, uint256 _nextId) external; // -- View functions -- function contains(uint256 _id) external view returns (bool); function isBatchedNode(uint256 _id) external view returns (bool); function isEmptyBatch(BatchId _id) external view returns (bool); function isEmpty() external view returns (bool); function getSize() external view returns (uint256); function getFirst() external view returns (uint256); function getLast() external view returns (uint256); function getNext(uint256 _id) external view returns (uint256); function getPrev(uint256 _id) external view returns (uint256); function validInsertPosition(uint256 _annualInterestRate, uint256 _prevId, uint256 _nextId) external view returns (bool); function findInsertPosition(uint256 _annualInterestRate, uint256 _prevId, uint256 _nextId) external view returns (uint256, uint256); // Public state variable getters function borrowerOperationsAddress() external view returns (address); function troveManager() external view returns (ITroveManager); function size() external view returns (uint256); function nodes(uint256 _id) external view returns (uint256 nextId, uint256 prevId, BatchId batchId, bool exists); function batches(BatchId _id) external view returns (uint256 head, uint256 tail); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IActivePool.sol"; import "./ILiquityBase.sol"; import "./IBoldToken.sol"; import "./ITroveManager.sol"; import "./IBoldRewardsReceiver.sol"; /* * The Stability Pool holds Bold tokens deposited by Stability Pool depositors. * * When a trove is liquidated, then depending on system conditions, some of its Bold debt gets offset with * Bold in the Stability Pool: that is, the offset debt evaporates, and an equal amount of Bold tokens in the Stability Pool is burned. * * Thus, a liquidation causes each depositor to receive a Bold loss, in proportion to their deposit as a share of total deposits. * They also receive an Coll gain, as the collateral of the liquidated trove is distributed among Stability depositors, * in the same proportion. * * When a liquidation occurs, it depletes every deposit by the same fraction: for example, a liquidation that depletes 40% * of the total Bold in the Stability Pool, depletes 40% of each deposit. * * A deposit that has experienced a series of liquidations is termed a "compounded deposit": each liquidation depletes the deposit, * multiplying it by some factor in range ]0,1[ * * Please see the implementation spec in the proof document, which closely follows on from the compounded deposit / Coll gain derivations: * https://github.com/liquity/liquity/blob/master/papers/Scalable_Reward_Distribution_with_Compounding_Stakes.pdf * */ interface IStabilityPool is ILiquityBase, IBoldRewardsReceiver { function boldToken() external view returns (IBoldToken); function troveManager() external view returns (ITroveManager); /* provideToSP(): * - Calculates depositor's Coll gain * - Calculates the compounded deposit * - Increases deposit, and takes new snapshots of accumulators P and S * - Sends depositor's accumulated Coll gains to depositor */ function provideToSP(uint256 _amount, bool _doClaim) external; /* withdrawFromSP(): * - Calculates depositor's Coll gain * - Calculates the compounded deposit * - Sends the requested BOLD withdrawal to depositor * - (If _amount > userDeposit, the user withdraws all of their compounded deposit) * - Decreases deposit by withdrawn amount and takes new snapshots of accumulators P and S */ function withdrawFromSP(uint256 _amount, bool doClaim) external; function claimAllCollGains() external; /* * Initial checks: * - Caller is TroveManager * --- * Cancels out the specified debt against the Bold contained in the Stability Pool (as far as possible) * and transfers the Trove's collateral from ActivePool to StabilityPool. * Only called by liquidation functions in the TroveManager. */ function offset(uint256 _debt, uint256 _coll) external; function deposits(address _depositor) external view returns (uint256 initialValue); function stashedColl(address _depositor) external view returns (uint256); /* * Returns the total amount of Coll held by the pool, accounted in an internal variable instead of `balance`, * to exclude edge cases like Coll received from a self-destruct. */ function getCollBalance() external view returns (uint256); /* * Returns Bold held in the pool. Changes when users deposit/withdraw, and when Trove debt is offset. */ function getTotalBoldDeposits() external view returns (uint256); function getYieldGainsOwed() external view returns (uint256); function getYieldGainsPending() external view returns (uint256); /* * Calculates the Coll gain earned by the deposit since its last snapshots were taken. */ function getDepositorCollGain(address _depositor) external view returns (uint256); /* * Calculates the BOLD yield gain earned by the deposit since its last snapshots were taken. */ function getDepositorYieldGain(address _depositor) external view returns (uint256); /* * Calculates what `getDepositorYieldGain` will be if interest is minted now. */ function getDepositorYieldGainWithPending(address _depositor) external view returns (uint256); /* * Return the user's compounded deposit. */ function getCompoundedBoldDeposit(address _depositor) external view returns (uint256); function epochToScaleToS(uint128 _epoch, uint128 _scale) external view returns (uint256); function epochToScaleToB(uint128 _epoch, uint128 _scale) external view returns (uint256); function P() external view returns (uint256); function currentScale() external view returns (uint128); function currentEpoch() external view returns (uint128); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./ILiquityBase.sol"; import "./ITroveNFT.sol"; import "./IBorrowerOperations.sol"; import "./IStabilityPool.sol"; import "./IBoldToken.sol"; import "./ISortedTroves.sol"; import "../Types/LatestTroveData.sol"; import "../Types/LatestBatchData.sol"; // Common interface for the Trove Manager. interface ITroveManager is ILiquityBase { enum Status { nonExistent, active, closedByOwner, closedByLiquidation, zombie } function shutdownTime() external view returns (uint256); function troveNFT() external view returns (ITroveNFT); function stabilityPool() external view returns (IStabilityPool); //function boldToken() external view returns (IBoldToken); function sortedTroves() external view returns (ISortedTroves); function borrowerOperations() external view returns (IBorrowerOperations); function Troves(uint256 _id) external view returns ( uint256 debt, uint256 coll, uint256 stake, Status status, uint64 arrayIndex, uint64 lastDebtUpdateTime, uint64 lastInterestRateAdjTime, uint256 annualInterestRate, address interestBatchManager, uint256 batchDebtShares ); function rewardSnapshots(uint256 _id) external view returns (uint256 coll, uint256 boldDebt); function getTroveIdsCount() external view returns (uint256); function getTroveFromTroveIdsArray(uint256 _index) external view returns (uint256); function getCurrentICR(uint256 _troveId, uint256 _price) external view returns (uint256); function lastZombieTroveId() external view returns (uint256); function batchLiquidateTroves(uint256[] calldata _troveArray) external; function redeemCollateral( address _sender, uint256 _boldAmount, uint256 _price, uint256 _redemptionRate, uint256 _maxIterations ) external returns (uint256 _redemeedAmount); function shutdown() external; function urgentRedemption(uint256 _boldAmount, uint256[] calldata _troveIds, uint256 _minCollateral) external; function getUnbackedPortionPriceAndRedeemability() external returns (uint256, uint256, bool); function getLatestTroveData(uint256 _troveId) external view returns (LatestTroveData memory); function getTroveAnnualInterestRate(uint256 _troveId) external view returns (uint256); function getTroveStatus(uint256 _troveId) external view returns (Status); function getLatestBatchData(address _batchAddress) external view returns (LatestBatchData memory); // -- permissioned functions called by BorrowerOperations function onOpenTrove(address _owner, uint256 _troveId, TroveChange memory _troveChange, uint256 _annualInterestRate) external; function onOpenTroveAndJoinBatch( address _owner, uint256 _troveId, TroveChange memory _troveChange, address _batchAddress, uint256 _batchColl, uint256 _batchDebt ) external; // Called from `adjustZombieTrove()` function setTroveStatusToActive(uint256 _troveId) external; function onAdjustTroveInterestRate( uint256 _troveId, uint256 _newColl, uint256 _newDebt, uint256 _newAnnualInterestRate, TroveChange calldata _troveChange ) external; function onAdjustTrove(uint256 _troveId, uint256 _newColl, uint256 _newDebt, TroveChange calldata _troveChange) external; function onAdjustTroveInsideBatch( uint256 _troveId, uint256 _newTroveColl, uint256 _newTroveDebt, TroveChange memory _troveChange, address _batchAddress, uint256 _newBatchColl, uint256 _newBatchDebt ) external; function onApplyTroveInterest( uint256 _troveId, uint256 _newTroveColl, uint256 _newTroveDebt, address _batchAddress, uint256 _newBatchColl, uint256 _newBatchDebt, TroveChange calldata _troveChange ) external; function onCloseTrove( uint256 _troveId, TroveChange memory _troveChange, // decrease vars: entire, with interest, batch fee and redistribution address _batchAddress, uint256 _newBatchColl, uint256 _newBatchDebt // entire, with interest and batch fee ) external; // -- batches -- function onRegisterBatchManager(address _batchAddress, uint256 _annualInterestRate, uint256 _annualFee) external; function onLowerBatchManagerAnnualFee( address _batchAddress, uint256 _newColl, uint256 _newDebt, uint256 _newAnnualManagementFee ) external; function onSetBatchManagerAnnualInterestRate( address _batchAddress, uint256 _newColl, uint256 _newDebt, uint256 _newAnnualInterestRate, uint256 _upfrontFee // needed by BatchUpdated event ) external; struct OnSetInterestBatchManagerParams { uint256 troveId; uint256 troveColl; // entire, with redistribution uint256 troveDebt; // entire, with interest, batch fee and redistribution TroveChange troveChange; address newBatchAddress; uint256 newBatchColl; // updated collateral for new batch manager uint256 newBatchDebt; // updated debt for new batch manager } function onSetInterestBatchManager(OnSetInterestBatchManagerParams calldata _params) external; function onRemoveFromBatch( uint256 _troveId, uint256 _newTroveColl, // entire, with redistribution uint256 _newTroveDebt, // entire, with interest, batch fee and redistribution TroveChange memory _troveChange, address _batchAddress, uint256 _newBatchColl, uint256 _newBatchDebt, // entire, with interest and batch fee uint256 _newAnnualInterestRate ) external; // -- end of permissioned functions -- }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "openzeppelin-contracts/contracts/token/ERC721/extensions/IERC721Metadata.sol"; import "./ITroveManager.sol"; interface ITroveNFT is IERC721Metadata { function mint(address _owner, uint256 _troveId) external; function burn(uint256 _troveId) external; }
//SPDX-License-Identifier: MIT pragma solidity 0.8.24; import "lib/Solady/src/utils/SSTORE2.sol"; import "./utils/JSON.sol"; import "./utils/baseSVG.sol"; import "./utils/bauhaus.sol"; import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {ITroveManager} from "src/Interfaces/ITroveManager.sol"; interface IMetadataNFT { struct TroveData { uint256 _tokenId; address _owner; address _collToken; address _boldToken; uint256 _collAmount; uint256 _debtAmount; uint256 _interestRate; ITroveManager.Status _status; } function uri(TroveData memory _troveData) external view returns (string memory); } contract MetadataNFT is IMetadataNFT { FixedAssetReader public immutable assetReader; string public constant name = "Liquity V2 Trove"; string public constant description = "Liquity V2 Trove position"; constructor(FixedAssetReader _assetReader) { assetReader = _assetReader; } function uri(TroveData memory _troveData) public view returns (string memory) { string memory attr = attributes(_troveData); return json.formattedMetadata(name, description, renderSVGImage(_troveData), attr); } function renderSVGImage(TroveData memory _troveData) internal view returns (string memory) { return svg._svg( baseSVG._svgProps(), string.concat( baseSVG._baseElements(assetReader), bauhaus._bauhaus(IERC20Metadata(_troveData._collToken).symbol(), _troveData._tokenId), dynamicTextComponents(_troveData) ) ); } function attributes(TroveData memory _troveData) public pure returns (string memory) { //include: collateral token address, collateral amount, debt token address, debt amount, interest rate, status return string.concat( '[{"trait_type": "Collateral Token", "value": "', LibString.toHexString(_troveData._collToken), '"}, {"trait_type": "Collateral Amount", "value": "', LibString.toString(_troveData._collAmount), '"}, {"trait_type": "Debt Token", "value": "', LibString.toHexString(_troveData._boldToken), '"}, {"trait_type": "Debt Amount", "value": "', LibString.toString(_troveData._debtAmount), '"}, {"trait_type": "Interest Rate", "value": "', LibString.toString(_troveData._interestRate), '"}, {"trait_type": "Status", "value": "', _status2Str(_troveData._status), '"} ]' ); } function dynamicTextComponents(TroveData memory _troveData) public view returns (string memory) { string memory id = LibString.toHexString(_troveData._tokenId); id = string.concat(LibString.slice(id, 0, 6), "...", LibString.slice(id, 38, 42)); return string.concat( baseSVG._formattedIdEl(id), baseSVG._formattedAddressEl(_troveData._owner), baseSVG._collLogo(IERC20Metadata(_troveData._collToken).symbol(), assetReader), baseSVG._statusEl(_status2Str(_troveData._status)), baseSVG._dynamicTextEls(_troveData._debtAmount, _troveData._collAmount, _troveData._interestRate) ); } function _status2Str(ITroveManager.Status status) internal pure returns (string memory) { if (status == ITroveManager.Status.active) return "Active"; if (status == ITroveManager.Status.closedByOwner) return "Closed"; if (status == ITroveManager.Status.closedByLiquidation) return "Liquidated"; if (status == ITroveManager.Status.zombie) return "Below Min Debt"; return ""; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IBoldToken.sol"; import "./ITroveManager.sol"; interface ICollateralRegistry { function baseRate() external view returns (uint256); function lastFeeOperationTime() external view returns (uint256); function redeemCollateral(uint256 _boldamount, uint256 _maxIterations, uint256 _maxFeePercentage) external; // getters function totalCollaterals() external view returns (uint256); function getToken(uint256 _index) external view returns (IERC20Metadata); function getTroveManager(uint256 _index) external view returns (ITroveManager); function boldToken() external view returns (IBoldToken); function getRedemptionRate() external view returns (uint256); function getRedemptionRateWithDecay() external view returns (uint256); function getRedemptionRateForRedeemedAmount(uint256 _redeemAmount) external view returns (uint256); function getRedemptionFeeWithDecay(uint256 _ETHDrawn) external view returns (uint256); function getEffectiveRedemptionFeeInBold(uint256 _redeemAmount) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IPriceFeed { function fetchPrice() external returns (uint256, bool); function fetchRedemptionPrice() external returns (uint256, bool); function lastGoodPrice() external view returns (uint256); function setAddresses(address _borrowerOperationsAddress) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IActivePool.sol"; import "./IDefaultPool.sol"; import "./IPriceFeed.sol"; interface ILiquityBase { function activePool() external view returns (IActivePool); function getEntireSystemDebt() external view returns (uint256); function getEntireSystemColl() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IAddRemoveManagers { function setAddManager(uint256 _troveId, address _manager) external; function setRemoveManager(uint256 _troveId, address _manager) external; function setRemoveManagerWithReceiver(uint256 _troveId, address _manager, address _receiver) external; function addManagerOf(uint256 _troveId) external view returns (address); function removeManagerReceiverOf(uint256 _troveId) external view returns (address, address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IWETH is IERC20Metadata { function deposit() external payable; function withdraw(uint256 wad) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; type BatchId is address; using {equals as ==, notEquals as !=, isZero, isNotZero} for BatchId global; function equals(BatchId a, BatchId b) pure returns (bool) { return BatchId.unwrap(a) == BatchId.unwrap(b); } function notEquals(BatchId a, BatchId b) pure returns (bool) { return !(a == b); } function isZero(BatchId x) pure returns (bool) { return x == BATCH_ID_ZERO; } function isNotZero(BatchId x) pure returns (bool) { return !x.isZero(); } BatchId constant BATCH_ID_ZERO = BatchId.wrap(address(0));
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; struct LatestTroveData { uint256 entireDebt; uint256 entireColl; uint256 redistBoldDebtGain; uint256 redistCollGain; uint256 accruedInterest; uint256 recordedDebt; uint256 annualInterestRate; uint256 weightedRecordedDebt; uint256 accruedBatchManagementFee; uint256 lastInterestRateAdjTime; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.24; struct LatestBatchData { uint256 entireDebtWithoutRedistribution; uint256 entireCollWithoutRedistribution; uint256 accruedInterest; uint256 recordedDebt; uint256 annualInterestRate; uint256 weightedRecordedDebt; uint256 annualManagementFee; uint256 accruedManagementFee; uint256 weightedRecordedBatchManagementFee; uint256 lastDebtUpdateTime; uint256 lastInterestRateAdjTime; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Read and write to persistent storage at a fraction of the cost. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SSTORE2.sol) /// @author Saw-mon-and-Natalie (https://github.com/Saw-mon-and-Natalie) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol) /// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol) /// @author Modified from SSTORE3 (https://github.com/Philogy/sstore3) library SSTORE2 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The proxy initialization code. uint256 private constant _CREATE3_PROXY_INITCODE = 0x67363d3d37363d34f03d5260086018f3; /// @dev Hash of the `_CREATE3_PROXY_INITCODE`. /// Equivalent to `keccak256(abi.encodePacked(hex"67363d3d37363d34f03d5260086018f3"))`. bytes32 internal constant CREATE3_PROXY_INITCODE_HASH = 0x21c35dbe1b344a2488cf3321d6ce542f8e9f305544ff09e4993a62319a497c1f; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Unable to deploy the storage contract. error DeploymentFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* WRITE LOGIC */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Writes `data` into the bytecode of a storage contract and returns its address. function write(bytes memory data) internal returns (address pointer) { /// @solidity memory-safe-assembly assembly { let n := mload(data) // Let `l` be `n + 1`. +1 as we prefix a STOP opcode. /** * ---------------------------------------------------+ * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------| * 61 l | PUSH2 l | l | | * 80 | DUP1 | l l | | * 60 0xa | PUSH1 0xa | 0xa l l | | * 3D | RETURNDATASIZE | 0 0xa l l | | * 39 | CODECOPY | l | [0..l): code | * 3D | RETURNDATASIZE | 0 l | [0..l): code | * F3 | RETURN | | [0..l): code | * 00 | STOP | | | * ---------------------------------------------------+ * @dev Prefix the bytecode with a STOP opcode to ensure it cannot be called. * Also PUSH2 is used since max contract size cap is 24,576 bytes which is less than 2 ** 16. */ // Do a out-of-gas revert if `n + 1` is more than 2 bytes. mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n))) // Deploy a new contract with the generated creation code. pointer := create(0, add(data, 0x15), add(n, 0xb)) if iszero(pointer) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(data, n) // Restore the length of `data`. } } /// @dev Writes `data` into the bytecode of a storage contract with `salt` /// and returns its normal CREATE2 deterministic address. function writeCounterfactual(bytes memory data, bytes32 salt) internal returns (address pointer) { /// @solidity memory-safe-assembly assembly { let n := mload(data) // Do a out-of-gas revert if `n + 1` is more than 2 bytes. mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n))) // Deploy a new contract with the generated creation code. pointer := create2(0, add(data, 0x15), add(n, 0xb), salt) if iszero(pointer) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(data, n) // Restore the length of `data`. } } /// @dev Writes `data` into the bytecode of a storage contract and returns its address. /// This uses the so-called "CREATE3" workflow, /// which means that `pointer` is agnostic to `data, and only depends on `salt`. function writeDeterministic(bytes memory data, bytes32 salt) internal returns (address pointer) { /// @solidity memory-safe-assembly assembly { let n := mload(data) mstore(0x00, _CREATE3_PROXY_INITCODE) // Store the `_PROXY_INITCODE`. let proxy := create2(0, 0x10, 0x10, salt) if iszero(proxy) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x14, proxy) // Store the proxy's address. // 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01). // 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex). mstore(0x00, 0xd694) mstore8(0x34, 0x01) // Nonce of the proxy contract (1). pointer := keccak256(0x1e, 0x17) // Do a out-of-gas revert if `n + 1` is more than 2 bytes. mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n))) if iszero( mul( // The arguments of `mul` are evaluated last to first. extcodesize(pointer), call(gas(), proxy, 0, add(data, 0x15), add(n, 0xb), codesize(), 0x00) ) ) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(data, n) // Restore the length of `data`. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ADDRESS CALCULATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the initialization code hash of the storage contract for `data`. /// Used for mining vanity addresses with create2crunch. function initCodeHash(bytes memory data) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let n := mload(data) // Do a out-of-gas revert if `n + 1` is more than 2 bytes. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xfffe)) mstore(data, add(0x61000180600a3d393df300, shl(0x40, n))) hash := keccak256(add(data, 0x15), add(n, 0xb)) mstore(data, n) // Restore the length of `data`. } } /// @dev Equivalent to `predictCounterfactualAddress(data, salt, address(this))` function predictCounterfactualAddress(bytes memory data, bytes32 salt) internal view returns (address pointer) { pointer = predictCounterfactualAddress(data, salt, address(this)); } /// @dev Returns the CREATE2 address of the storage contract for `data` /// deployed with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictCounterfactualAddress(bytes memory data, bytes32 salt, address deployer) internal pure returns (address predicted) { bytes32 hash = initCodeHash(data); /// @solidity memory-safe-assembly assembly { // Compute and store the bytecode hash. mstore8(0x00, 0xff) // Write the prefix. mstore(0x35, hash) mstore(0x01, shl(96, deployer)) mstore(0x15, salt) predicted := keccak256(0x00, 0x55) // Restore the part of the free memory pointer that has been overwritten. mstore(0x35, 0) } } /// @dev Equivalent to `predictDeterministicAddress(salt, address(this))`. function predictDeterministicAddress(bytes32 salt) internal view returns (address pointer) { pointer = predictDeterministicAddress(salt, address(this)); } /// @dev Returns the "CREATE3" deterministic address for `salt` with `deployer`. function predictDeterministicAddress(bytes32 salt, address deployer) internal pure returns (address pointer) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, deployer) // Store `deployer`. mstore8(0x0b, 0xff) // Store the prefix. mstore(0x20, salt) // Store the salt. mstore(0x40, CREATE3_PROXY_INITCODE_HASH) // Store the bytecode hash. mstore(0x14, keccak256(0x0b, 0x55)) // Store the proxy's address. mstore(0x40, m) // Restore the free memory pointer. // 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01). // 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex). mstore(0x00, 0xd694) mstore8(0x34, 0x01) // Nonce of the proxy contract (1). pointer := keccak256(0x1e, 0x17) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* READ LOGIC */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `read(pointer, 0, 2 ** 256 - 1)`. function read(address pointer) internal view returns (bytes memory data) { /// @solidity memory-safe-assembly assembly { data := mload(0x40) let n := and(0xffffffffff, sub(extcodesize(pointer), 0x01)) extcodecopy(pointer, add(data, 0x1f), 0x00, add(n, 0x21)) mstore(data, n) // Store the length. mstore(0x40, add(n, add(data, 0x40))) // Allocate memory. } } /// @dev Equivalent to `read(pointer, start, 2 ** 256 - 1)`. function read(address pointer, uint256 start) internal view returns (bytes memory data) { /// @solidity memory-safe-assembly assembly { data := mload(0x40) let n := and(0xffffffffff, sub(extcodesize(pointer), 0x01)) extcodecopy(pointer, add(data, 0x1f), start, add(n, 0x21)) mstore(data, mul(sub(n, start), lt(start, n))) // Store the length. mstore(0x40, add(data, add(0x40, mload(data)))) // Allocate memory. } } /// @dev Returns a slice of the data on `pointer` from `start` to `end`. /// `start` and `end` will be clamped to the range `[0, args.length]`. /// The `pointer` MUST be deployed via the SSTORE2 write functions. /// Otherwise, the behavior is undefined. /// Out-of-gas reverts if `pointer` does not have any code. function read(address pointer, uint256 start, uint256 end) internal view returns (bytes memory data) { /// @solidity memory-safe-assembly assembly { data := mload(0x40) if iszero(lt(end, 0xffff)) { end := 0xffff } let d := mul(sub(end, start), lt(start, end)) extcodecopy(pointer, add(data, 0x1f), start, add(d, 0x01)) if iszero(and(0xff, mload(add(data, d)))) { let n := sub(extcodesize(pointer), 0x01) returndatacopy(returndatasize(), returndatasize(), shr(40, n)) d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n)))) } mstore(data, d) // Store the length. mstore(add(add(data, 0x20), d), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(data, 0x40), d)) // Allocate memory. } } }
//SPDX-License-Identifier: MIT pragma solidity ^0.8.12; // JSON utilities for base64 encoded ERC721 JSON metadata scheme library json { ///////////////////////////////////////////////////////////////////////////////////////////////////////////// /// @dev JSON requires that double quotes be escaped or JSONs will not build correctly /// string.concat also requires an escape, use \\" or the constant DOUBLE_QUOTES to represent " in JSON ///////////////////////////////////////////////////////////////////////////////////////////////////////////// string constant DOUBLE_QUOTES = '\\"'; function formattedMetadata( string memory name, string memory description, string memory svgImg, string memory attributes ) internal pure returns (string memory) { return string.concat( "data:application/json;base64,", encode( bytes( string.concat( "{", _prop("name", name), _prop("description", description), _xmlImage(svgImg), ',"attributes":', attributes, "}" ) ) ) ); } function _xmlImage(string memory _svgImg) internal pure returns (string memory) { return _prop("image", string.concat("data:image/svg+xml;base64,", encode(bytes(_svgImg))), true); } function _prop(string memory _key, string memory _val) internal pure returns (string memory) { return string.concat('"', _key, '": ', '"', _val, '", '); } function _prop(string memory _key, string memory _val, bool last) internal pure returns (string memory) { if (last) { return string.concat('"', _key, '": ', '"', _val, '"'); } else { return string.concat('"', _key, '": ', '"', _val, '", '); } } function _object(string memory _key, string memory _val) internal pure returns (string memory) { return string.concat('"', _key, '": ', "{", _val, "}"); } /** * taken from Openzeppelin * @dev Base64 Encoding/Decoding Table */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // Loads the table into memory string memory table = _TABLE; // Encoding takes 3 bytes chunks of binary data from `bytes` data parameter // and split into 4 numbers of 6 bits. // The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up // - `data.length + 2` -> Round up // - `/ 3` -> Number of 3-bytes chunks // - `4 *` -> 4 characters for each chunk string memory result = new string(4 * ((data.length + 2) / 3)); assembly { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 32) // Run over the input, 3 bytes at a time for { let dataPtr := data let endPtr := add(data, mload(data)) } lt(dataPtr, endPtr) {} { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 bytes (18 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F which is the number of // the previous character in the ASCII table prior to the Base64 Table // The result is then added to the table to get the character to write, // and finally write it in the result pointer but with a left shift // of 256 (1 byte) - 8 (1 ASCII char) = 248 bits mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } return result; } }
//SPDX-License-Identifier: MIT pragma solidity 0.8.24; import {svg} from "./SVG.sol"; import {utils, LibString, numUtils} from "./Utils.sol"; import "./FixedAssets.sol"; library baseSVG { string constant GEIST = 'style="font-family: Geist" '; string constant DARK_BLUE = "#121B44"; string constant STOIC_WHITE = "#DEE4FB"; function _svgProps() internal pure returns (string memory) { return string.concat( svg.prop("width", "300"), svg.prop("height", "484"), svg.prop("viewBox", "0 0 300 484"), svg.prop("style", "background:none") ); } function _baseElements(FixedAssetReader _assetReader) internal view returns (string memory) { return string.concat( svg.rect( string.concat( svg.prop("fill", DARK_BLUE), svg.prop("rx", "8"), svg.prop("width", "300"), svg.prop("height", "484") ) ), _styles(_assetReader), _leverageLogo(), _boldLogo(_assetReader), _staticTextEls() ); } function _styles(FixedAssetReader _assetReader) private view returns (string memory) { return svg.el( "style", utils.NULL, string.concat( '@font-face { font-family: "Geist"; src: url("data:font/woff2;utf-8;base64,', _assetReader.readAsset(bytes4(keccak256("geist"))), '"); }' ) ); } function _leverageLogo() internal pure returns (string memory) { return string.concat( svg.path( "M20.2 31.2C19.1 32.4 17.6 33 16 33L16 21C17.6 21 19.1 21.6 20.2 22.7C21.4 23.9 22 25.4 22 27C22 28.6 21.4 30.1 20.2 31.2Z", svg.prop("fill", STOIC_WHITE) ), svg.path( "M22 27C22 25.4 22.6 23.9 23.8 22.7C25 21.6 26.4 21 28 21V33C26.4 33 25 32.4 24 31.2C22.6 30.1 22 28.6 22 27Z", svg.prop("fill", STOIC_WHITE) ) ); } function _boldLogo(FixedAssetReader _assetReader) internal view returns (string memory) { return svg.el( "image", string.concat( svg.prop("x", "264"), svg.prop("y", "373.5"), svg.prop("width", "20"), svg.prop("height", "20"), svg.prop( "href", string.concat("data:image/svg+xml;base64,", _assetReader.readAsset(bytes4(keccak256("BOLD")))) ) ) ); } function _staticTextEls() internal pure returns (string memory) { return string.concat( svg.text( string.concat( GEIST, svg.prop("x", "16"), svg.prop("y", "358"), svg.prop("font-size", "14"), svg.prop("fill", "white") ), "Collateral" ), svg.text( string.concat( GEIST, svg.prop("x", "16"), svg.prop("y", "389"), svg.prop("font-size", "14"), svg.prop("fill", "white") ), "Debt" ), svg.text( string.concat( GEIST, svg.prop("x", "16"), svg.prop("y", "420"), svg.prop("font-size", "14"), svg.prop("fill", "white") ), "Interest Rate" ), svg.text( string.concat( GEIST, svg.prop("x", "265"), svg.prop("y", "422"), svg.prop("font-size", "20"), svg.prop("fill", "white") ), "%" ), svg.text( string.concat( GEIST, svg.prop("x", "16"), svg.prop("y", "462"), svg.prop("font-size", "14"), svg.prop("fill", "white") ), "Owner" ) ); } function _formattedDynamicEl(string memory _value, uint256 _x, uint256 _y) internal pure returns (string memory) { return svg.text( string.concat( GEIST, svg.prop("text-anchor", "end"), svg.prop("x", LibString.toString(_x)), svg.prop("y", LibString.toString(_y)), svg.prop("font-size", "20"), svg.prop("fill", "white") ), _value ); } function _formattedIdEl(string memory _id) internal pure returns (string memory) { return svg.text( string.concat( GEIST, svg.prop("text-anchor", "end"), svg.prop("x", "284"), svg.prop("y", "33"), svg.prop("font-size", "14"), svg.prop("fill", "white") ), _id ); } function _formattedAddressEl(address _address) internal pure returns (string memory) { return svg.text( string.concat( GEIST, svg.prop("text-anchor", "end"), svg.prop("x", "284"), svg.prop("y", "462"), svg.prop("font-size", "14"), svg.prop("fill", "white") ), string.concat( LibString.slice(LibString.toHexStringChecksummed(_address), 0, 6), "...", LibString.slice(LibString.toHexStringChecksummed(_address), 38, 42) ) ); } function _collLogo(string memory _collName, FixedAssetReader _assetReader) internal view returns (string memory) { return svg.el( "image", string.concat( svg.prop("x", "264"), svg.prop("y", "342.5"), svg.prop("width", "20"), svg.prop("height", "20"), svg.prop( "href", string.concat( "data:image/svg+xml;base64,", _assetReader.readAsset(bytes4(keccak256(bytes(_collName)))) ) ) ) ); } function _statusEl(string memory _status) internal pure returns (string memory) { return svg.text( string.concat( GEIST, svg.prop("x", "40"), svg.prop("y", "33"), svg.prop("font-size", "14"), svg.prop("fill", "white") ), _status ); } function _dynamicTextEls(uint256 _debt, uint256 _coll, uint256 _annualInterestRate) internal pure returns (string memory) { return string.concat( _formattedDynamicEl(numUtils.toLocaleString(_coll, 18, 4), 256, 360), _formattedDynamicEl(numUtils.toLocaleString(_debt, 18, 2), 256, 391), _formattedDynamicEl(numUtils.toLocaleString(_annualInterestRate, 16, 2), 256, 422) ); } }
//SPDX-License-Identifier: MIT pragma solidity 0.8.24; import "./SVG.sol"; library bauhaus { string constant GOLDEN = "#F5D93A"; string constant CORAL = "#FB7C59"; string constant GREEN = "#63D77D"; string constant CYAN = "#95CBF3"; string constant BLUE = "#405AE5"; string constant DARK_BLUE = "#121B44"; string constant BROWN = "#D99664"; enum colorCode { GOLDEN, CORAL, GREEN, CYAN, BLUE, DARK_BLUE, BROWN } function _bauhaus(string memory _collName, uint256 _troveId) internal pure returns (string memory) { bytes32 collSig = keccak256(bytes(_collName)); uint256 variant = _troveId % 4; if (collSig == keccak256("WETH")) { return _img1(variant); } else if (collSig == keccak256("wstETH")) { return _img2(variant); } else { // assume rETH return _img3(variant); } } function _colorCode2Hex(colorCode _color) private pure returns (string memory) { if (_color == colorCode.GOLDEN) { return GOLDEN; } else if (_color == colorCode.CORAL) { return CORAL; } else if (_color == colorCode.GREEN) { return GREEN; } else if (_color == colorCode.CYAN) { return CYAN; } else if (_color == colorCode.BLUE) { return BLUE; } else if (_color == colorCode.DARK_BLUE) { return DARK_BLUE; } else { return BROWN; } } struct COLORS { colorCode rect1; colorCode rect2; colorCode rect3; colorCode rect4; colorCode rect5; colorCode poly; colorCode circle1; colorCode circle2; colorCode circle3; } function _colors1(uint256 _variant) internal pure returns (COLORS memory) { if (_variant == 0) { return COLORS( colorCode.BLUE, // rect1 colorCode.GOLDEN, // rect2 colorCode.GOLDEN, // rect3 colorCode.BROWN, // rect4 colorCode.CORAL, // rect5 colorCode.CYAN, // poly colorCode.GREEN, // circle1 colorCode.DARK_BLUE, // circle2 colorCode.GOLDEN // circle3 ); } else if (_variant == 1) { return COLORS( colorCode.GREEN, // rect1 colorCode.BLUE, // rect2 colorCode.GOLDEN, // rect3 colorCode.BROWN, // rect4 colorCode.GOLDEN, // rect5 colorCode.CORAL, // poly colorCode.BLUE, // circle1 colorCode.DARK_BLUE, // circle2 colorCode.BLUE // circle3 ); } else if (_variant == 2) { return COLORS( colorCode.BLUE, // rect1 colorCode.GOLDEN, // rect2 colorCode.CYAN, // rect3 colorCode.GOLDEN, // rect4 colorCode.BROWN, // rect5 colorCode.GREEN, // poly colorCode.CORAL, // circle1 colorCode.DARK_BLUE, // circle2 colorCode.BROWN // circle3 ); } else { return COLORS( colorCode.CYAN, // rect1 colorCode.BLUE, // rect2 colorCode.BLUE, // rect3 colorCode.BROWN, // rect4 colorCode.BLUE, // rect5 colorCode.GREEN, // poly colorCode.GOLDEN, // circle1 colorCode.DARK_BLUE, // circle2 colorCode.BLUE // circle3 ); } } function _img1(uint256 _variant) internal pure returns (string memory) { COLORS memory colors = _colors1(_variant); return string.concat(_rects1(colors), _polygons1(colors), _circles1(colors)); } function _rects1(COLORS memory _colors) internal pure returns (string memory) { return string.concat( //background svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "55"), svg.prop("width", "268"), svg.prop("height", "268"), svg.prop("fill", DARK_BLUE) ) ), // large right rect | rect1 svg.rect( string.concat( svg.prop("x", "128"), svg.prop("y", "55"), svg.prop("width", "156"), svg.prop("height", "268"), svg.prop("fill", _colorCode2Hex(_colors.rect1)) ) ), // small upper right rect | rect2 svg.rect( string.concat( svg.prop("x", "228"), svg.prop("y", "55"), svg.prop("width", "56"), svg.prop("height", "56"), svg.prop("fill", _colorCode2Hex(_colors.rect2)) ) ), // large central left rect | rect3 svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "111"), svg.prop("width", "134"), svg.prop("height", "156"), svg.prop("fill", _colorCode2Hex(_colors.rect3)) ) ), // small lower left rect | rect4 svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "267"), svg.prop("width", "112"), svg.prop("height", "56"), svg.prop("fill", _colorCode2Hex(_colors.rect4)) ) ), // small lower right rect | rect5 svg.rect( string.concat( svg.prop("x", "228"), svg.prop("y", "267"), svg.prop("width", "56"), svg.prop("height", "56"), svg.prop("fill", _colorCode2Hex(_colors.rect5)) ) ) ); } function _polygons1(COLORS memory _colors) internal pure returns (string memory) { return string.concat( // left triangle | poly1 svg.polygon( string.concat(svg.prop("points", "16,55 72,55 16,111"), svg.prop("fill", _colorCode2Hex(_colors.poly))) ), // right triangle | poly2 svg.polygon( string.concat(svg.prop("points", "72,55 128,55 72,111"), svg.prop("fill", _colorCode2Hex(_colors.poly))) ) ); } function _circles1(COLORS memory _colors) internal pure returns (string memory) { return string.concat( //large central circle | circle1 svg.circle( string.concat( svg.prop("cx", "150"), svg.prop("cy", "189"), svg.prop("r", "78"), svg.prop("fill", _colorCode2Hex(_colors.circle1)) ) ), //small right circle | circle2 svg.circle( string.concat( svg.prop("cx", "228"), svg.prop("cy", "295"), svg.prop("r", "28"), svg.prop("fill", _colorCode2Hex(_colors.circle2)) ) ), //small right half circle | circle3 svg.path( "M228 267C220.574 267 213.452 269.95 208.201 275.201C202.95 280.452 200 287.574 200 295C200 302.426 202.95 309.548 208.201 314.799C213.452 320.05 220.574 323 228 323L228 267Z", svg.prop("fill", _colorCode2Hex(_colors.circle3)) ) ); } function _colors2(uint256 _variant) internal pure returns (COLORS memory) { if (_variant == 0) { return COLORS( colorCode.BROWN, // rect1 colorCode.GOLDEN, // rect2 colorCode.BLUE, // rect3 colorCode.GREEN, // rect4 colorCode.CORAL, // rect5 colorCode.GOLDEN, // unused colorCode.GOLDEN, // circle1 colorCode.CYAN, // circle2 colorCode.GREEN // circle3 ); } else if (_variant == 1) { return COLORS( colorCode.GREEN, // rect1 colorCode.BROWN, // rect2 colorCode.GOLDEN, // rect3 colorCode.BLUE, // rect4 colorCode.CYAN, // rect5 colorCode.GOLDEN, // unused colorCode.GREEN, // circle1 colorCode.CORAL, // circle2 colorCode.BLUE // circle3 ); } else if (_variant == 2) { return COLORS( colorCode.BLUE, // rect1 colorCode.GOLDEN, // rect2 colorCode.GREEN, // rect3 colorCode.BLUE, // rect4 colorCode.CORAL, // rect5 colorCode.GOLDEN, // unused colorCode.CYAN, // circle1 colorCode.BROWN, // circle2 colorCode.BROWN // circle3 ); } else { return COLORS( colorCode.GOLDEN, // rect1 colorCode.GREEN, // rect2 colorCode.BLUE, // rect3 colorCode.GOLDEN, // rect4 colorCode.BROWN, // rect5 colorCode.GOLDEN, // unused colorCode.BROWN, // circle1 colorCode.CYAN, // circle2 colorCode.CORAL // circle3 ); } } function _img2(uint256 _variant) internal pure returns (string memory) { COLORS memory colors = _colors2(_variant); return string.concat(_rects2(colors), _circles2(colors)); } function _rects2(COLORS memory _colors) internal pure returns (string memory) { return string.concat( //background svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "55"), svg.prop("width", "268"), svg.prop("height", "268"), svg.prop("fill", DARK_BLUE) ) ), // large upper right rect | rect1 svg.rect( string.concat( svg.prop("x", "128"), svg.prop("y", "55"), svg.prop("width", "156"), svg.prop("height", "156"), svg.prop("fill", _colorCode2Hex(_colors.rect1)) ) ), // large central left rect | rect2 svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "111"), svg.prop("width", "134"), svg.prop("height", "100"), svg.prop("fill", _colorCode2Hex(_colors.rect2)) ) ), // large lower left rect | rect3 svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "211"), svg.prop("width", "212"), svg.prop("height", "56"), svg.prop("fill", _colorCode2Hex(_colors.rect3)) ) ), // small lower central rect | rect4 svg.rect( string.concat( svg.prop("x", "72"), svg.prop("y", "267"), svg.prop("width", "78"), svg.prop("height", "56"), svg.prop("fill", _colorCode2Hex(_colors.rect4)) ) ), // small lower right rect | rect5 svg.rect( string.concat( svg.prop("x", "150"), svg.prop("y", "267"), svg.prop("width", "134"), svg.prop("height", "56"), svg.prop("fill", _colorCode2Hex(_colors.rect5)) ) ) ); } function _circles2(COLORS memory _colors) internal pure returns (string memory) { return string.concat( //lower left circle | circle1 svg.circle( string.concat( svg.prop("cx", "44"), svg.prop("cy", "295"), svg.prop("r", "28"), svg.prop("fill", _colorCode2Hex(_colors.circle1)) ) ), //upper left half circle | circle2 svg.path( "M16 55C16 62.4 17.4 69.6 20.3 76.4C23.1 83.2 27.2 89.4 32.4 94.6C37.6 99.8 43.8 103.9 50.6 106.7C57.4 109.6 64.6 111 72 111C79.4 111 86.6 109.6 93.4 106.7C100.2 103.9 106.4 99.8 111.6 94.6C116.8 89.4 120.9 83.2 123.7 76.4C126.6 69.6 128 62.4 128 55L16 55Z", svg.prop("fill", _colorCode2Hex(_colors.circle2)) ), //central right half circle | circle3 svg.path( "M284 211C284 190.3 275.8 170.5 261.2 155.8C246.5 141.2 226.7 133 206 133C185.3 133 165.5 141.2 150.9 155.86C136.2 170.5 128 190.3 128 211L284 211Z", svg.prop("fill", _colorCode2Hex(_colors.circle3)) ) ); } function _colors3(uint256 _variant) internal pure returns (COLORS memory) { if (_variant == 0) { return COLORS( colorCode.BLUE, // rect1 colorCode.CORAL, // rect2 colorCode.BLUE, // rect3 colorCode.GREEN, // rect4 colorCode.GOLDEN, // unused colorCode.GOLDEN, // unused colorCode.GOLDEN, // circle1 colorCode.CYAN, // circle2 colorCode.GOLDEN // circle3 ); } else if (_variant == 1) { return COLORS( colorCode.CORAL, // rect1 colorCode.GREEN, // rect2 colorCode.BROWN, // rect3 colorCode.GOLDEN, // rect4 colorCode.GOLDEN, // unused colorCode.GOLDEN, // unused colorCode.BLUE, // circle1 colorCode.BLUE, // circle2 colorCode.CYAN // circle3 ); } else if (_variant == 2) { return COLORS( colorCode.CORAL, // rect1 colorCode.CYAN, // rect2 colorCode.CORAL, // rect3 colorCode.GOLDEN, // rect4 colorCode.GOLDEN, // unused colorCode.GOLDEN, // unused colorCode.GREEN, // circle1 colorCode.BLUE, // circle2 colorCode.GREEN // circle3 ); } else { return COLORS( colorCode.GOLDEN, // rect1 colorCode.CORAL, // rect2 colorCode.GREEN, // rect3 colorCode.BLUE, // rect4 colorCode.GOLDEN, // unused colorCode.GOLDEN, // unused colorCode.BROWN, // circle1 colorCode.BLUE, // circle2 colorCode.GREEN // circle3 ); } } function _img3(uint256 _variant) internal pure returns (string memory) { COLORS memory colors = _colors3(_variant); return string.concat(_rects3(colors), _circles3(colors)); } function _rects3(COLORS memory _colors) internal pure returns (string memory) { return string.concat( //background svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "55"), svg.prop("width", "268"), svg.prop("height", "268"), svg.prop("fill", DARK_BLUE) ) ), // lower left rect | rect1 svg.rect( string.concat( svg.prop("x", "16"), svg.prop("y", "205"), svg.prop("width", "75"), svg.prop("height", "118"), svg.prop("fill", _colorCode2Hex(_colors.rect1)) ) ), // central rect | rect2 svg.rect( string.concat( svg.prop("x", "91"), svg.prop("y", "205"), svg.prop("width", "136"), svg.prop("height", "59"), svg.prop("fill", _colorCode2Hex(_colors.rect2)) ) ), // central right rect | rect3 svg.rect( string.concat( svg.prop("x", "166"), svg.prop("y", "180"), svg.prop("width", "118"), svg.prop("height", "25"), svg.prop("fill", _colorCode2Hex(_colors.rect3)) ) ), // upper right rect | rect4 svg.rect( string.concat( svg.prop("x", "166"), svg.prop("y", "55"), svg.prop("width", "118"), svg.prop("height", "126"), svg.prop("fill", _colorCode2Hex(_colors.rect4)) ) ) ); } function _circles3(COLORS memory _colors) internal pure returns (string memory) { return string.concat( //upper left circle | circle1 svg.circle( string.concat( svg.prop("cx", "91"), svg.prop("cy", "130"), svg.prop("r", "75"), svg.prop("fill", _colorCode2Hex(_colors.circle1)) ) ), //upper right half circle | circle2 svg.path( "M284 264 166 264 166 263C166 232 193 206 225 205C258 206 284 232 284 264C284 264 284 264 284 264Z", svg.prop("fill", _colorCode2Hex(_colors.circle2)) ), //lower right half circle | circle3 svg.path( "M284 323 166 323 166 323C166 290 193 265 225 264C258 265 284 290 284 323C284 323 284 323 284 323Z", svg.prop("fill", _colorCode2Hex(_colors.circle3)) ) ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
//SPDX-License-Identifier: MIT pragma solidity ^0.8.18; import {utils, LibString} from "./Utils.sol"; /// @notice Core SVG utility library which helps us construct onchain SVG's with a simple, web-like API. /// @author Modified from (https://github.com/w1nt3r-eth/hot-chain-svg/blob/main/contracts/SVG.sol) by w1nt3r-eth. library svg { /* GLOBAL CONSTANTS */ string internal constant _SVG = 'xmlns="http://www.w3.org/2000/svg"'; string internal constant _HTML = 'xmlns="http://www.w3.org/1999/xhtml"'; string internal constant _XMLNS = "http://www.w3.org/2000/xmlns/ "; string internal constant _XLINK = "http://www.w3.org/1999/xlink "; /* MAIN ELEMENTS */ function g(string memory _props, string memory _children) internal pure returns (string memory) { return el("g", _props, _children); } function _svg(string memory _props, string memory _children) internal pure returns (string memory) { return el("svg", string.concat(_SVG, " ", _props), _children); } function style(string memory _title, string memory _props) internal pure returns (string memory) { return el("style", string.concat(".", _title, " ", _props)); } function path(string memory _d) internal pure returns (string memory) { return el("path", prop("d", _d, true)); } function path(string memory _d, string memory _props) internal pure returns (string memory) { return el("path", string.concat(prop("d", _d), _props)); } function path(string memory _d, string memory _props, string memory _children) internal pure returns (string memory) { return el("path", string.concat(prop("d", _d), _props), _children); } function text(string memory _props, string memory _children) internal pure returns (string memory) { return el("text", _props, _children); } function line(string memory _props) internal pure returns (string memory) { return el("line", _props); } function line(string memory _props, string memory _children) internal pure returns (string memory) { return el("line", _props, _children); } function circle(string memory _props) internal pure returns (string memory) { return el("circle", _props); } function circle(string memory _props, string memory _children) internal pure returns (string memory) { return el("circle", _props, _children); } function circle(string memory cx, string memory cy, string memory r) internal pure returns (string memory) { return el("circle", string.concat(prop("cx", cx), prop("cy", cy), prop("r", r, true))); } function circle(string memory cx, string memory cy, string memory r, string memory _children) internal pure returns (string memory) { return el("circle", string.concat(prop("cx", cx), prop("cy", cy), prop("r", r, true)), _children); } function circle(string memory cx, string memory cy, string memory r, string memory _props, string memory _children) internal pure returns (string memory) { return el("circle", string.concat(prop("cx", cx), prop("cy", cy), prop("r", r), _props), _children); } function ellipse(string memory _props) internal pure returns (string memory) { return el("ellipse", _props); } function ellipse(string memory _props, string memory _children) internal pure returns (string memory) { return el("ellipse", _props, _children); } function polygon(string memory _props) internal pure returns (string memory) { return el("polygon", _props); } function polygon(string memory _props, string memory _children) internal pure returns (string memory) { return el("polygon", _props, _children); } function polyline(string memory _props) internal pure returns (string memory) { return el("polyline", _props); } function polyline(string memory _props, string memory _children) internal pure returns (string memory) { return el("polyline", _props, _children); } function rect(string memory _props) internal pure returns (string memory) { return el("rect", _props); } function rect(string memory _props, string memory _children) internal pure returns (string memory) { return el("rect", _props, _children); } function filter(string memory _props, string memory _children) internal pure returns (string memory) { return el("filter", _props, _children); } function cdata(string memory _content) internal pure returns (string memory) { return string.concat("<![CDATA[", _content, "]]>"); } /* GRADIENTS */ function radialGradient(string memory _props, string memory _children) internal pure returns (string memory) { return el("radialGradient", _props, _children); } function linearGradient(string memory _props, string memory _children) internal pure returns (string memory) { return el("linearGradient", _props, _children); } function gradientStop(uint256 offset, string memory stopColor, string memory _props) internal pure returns (string memory) { return el( "stop", string.concat( prop("stop-color", stopColor), " ", prop("offset", string.concat(LibString.toString(offset), "%")), " ", _props ), utils.NULL ); } /* ANIMATION */ function animateTransform(string memory _props) internal pure returns (string memory) { return el("animateTransform", _props); } function animate(string memory _props) internal pure returns (string memory) { return el("animate", _props); } /* COMMON */ // A generic element, can be used to construct any SVG (or HTML) element function el(string memory _tag, string memory _props, string memory _children) internal pure returns (string memory) { return string.concat("<", _tag, " ", _props, ">", _children, "</", _tag, ">"); } // A generic element, can be used to construct SVG (or HTML) elements without children function el(string memory _tag, string memory _props) internal pure returns (string memory) { return string.concat("<", _tag, " ", _props, "/>"); } // an SVG attribute function prop(string memory _key, string memory _val) internal pure returns (string memory) { return string.concat(_key, "=", '"', _val, '" '); } function prop(string memory _key, string memory _val, bool last) internal pure returns (string memory) { if (last) { return string.concat(_key, "=", '"', _val, '"'); } else { return string.concat(_key, "=", '"', _val, '" '); } } }
//SPDX-License-Identifier: MIT pragma solidity 0.8.24; import "lib/Solady/src/utils/LibString.sol"; library numUtils { function toLocale(string memory _wholeNumber) internal pure returns (string memory) { bytes memory b = bytes(_wholeNumber); uint256 len = b.length; if (len < 4) return _wholeNumber; uint256 numCommas = (len - 1) / 3; bytes memory result = new bytes(len + numCommas); uint256 j = result.length - 1; uint256 k = len; for (uint256 i = 0; i < len; i++) { result[j] = b[k - 1]; j = j > 1 ? j - 1 : 0; k--; if (k > 0 && (len - k) % 3 == 0) { result[j] = ","; j = j > 1 ? j - 1 : 0; } } return string(result); } // returns a string representation of a number with commas, where result = _value / 10 ** _divisor function toLocaleString(uint256 _value, uint8 _divisor, uint8 _precision) internal pure returns (string memory) { uint256 whole; uint256 fraction; if (_divisor > 0) { whole = _value / 10 ** _divisor; // check if the divisor is less than the precision if (_divisor <= _precision) { fraction = (_value % 10 ** _divisor); // adjust fraction to be the same as the precision fraction = fraction * 10 ** (_precision - _divisor); // if whole is zero, then add another zero to the fraction, special case if the value is 1 fraction = (whole == 0 && _value != 1) ? fraction * 10 : fraction; } else { fraction = (_value % 10 ** _divisor) / 10 ** (_divisor - _precision - 1); } } else { whole = _value; } string memory wholeStr = toLocale(LibString.toString(whole)); if (fraction == 0) { if (whole > 0 && _precision > 0) wholeStr = string.concat(wholeStr, "."); for (uint8 i = 0; i < _precision; i++) { wholeStr = string.concat(wholeStr, "0"); } return wholeStr; } string memory fractionStr = LibString.slice(LibString.toString(fraction), 0, _precision); // pad with leading zeros if (_precision > bytes(fractionStr).length) { uint256 len = _precision - bytes(fractionStr).length; string memory zeroStr = ""; for (uint8 i = 0; i < len; i++) { zeroStr = string.concat(zeroStr, "0"); } fractionStr = string.concat(zeroStr, fractionStr); } return string.concat(wholeStr, _precision > 0 ? "." : "", fractionStr); } } /// @notice Core utils used extensively to format CSS and numbers. /// @author Modified from (https://github.com/w1nt3r-eth/hot-chain-svg/blob/main/contracts/Utils.sol) by w1nt3r-eth. library utils { // used to simulate empty strings string internal constant NULL = ""; // formats a CSS variable line. includes a semicolon for formatting. function setCssVar(string memory _key, string memory _val) internal pure returns (string memory) { return string.concat("--", _key, ":", _val, ";"); } // formats getting a css variable function getCssVar(string memory _key) internal pure returns (string memory) { return string.concat("var(--", _key, ")"); } // formats getting a def URL function getDefURL(string memory _id) internal pure returns (string memory) { return string.concat("url(#", _id, ")"); } // formats rgba white with a specified opacity / alpha function white_a(uint256 _a) internal pure returns (string memory) { return rgba(255, 255, 255, _a); } // formats rgba black with a specified opacity / alpha function black_a(uint256 _a) internal pure returns (string memory) { return rgba(0, 0, 0, _a); } // formats generic rgba color in css function rgba(uint256 _r, uint256 _g, uint256 _b, uint256 _a) internal pure returns (string memory) { string memory formattedA = _a < 100 ? string.concat("0.", LibString.toString(_a)) : "1"; return string.concat( "rgba(", LibString.toString(_r), ",", LibString.toString(_g), ",", LibString.toString(_b), ",", formattedA, ")" ); } function cssBraces(string memory _attribute, string memory _value) internal pure returns (string memory) { return string.concat(" {", _attribute, ": ", _value, "}"); } function cssBraces(string[] memory _attributes, string[] memory _values) internal pure returns (string memory) { require(_attributes.length == _values.length, "Utils: Unbalanced Arrays"); uint256 len = _attributes.length; string memory results = " {"; for (uint256 i = 0; i < len; i++) { results = string.concat(results, _attributes[i], ": ", _values[i], "; "); } return string.concat(results, "}"); } //deals with integers (i.e. no decimals) function points(uint256[2][] memory pointsArray) internal pure returns (string memory) { require(pointsArray.length >= 3, "Utils: Array too short"); uint256 len = pointsArray.length - 1; string memory results = 'points="'; for (uint256 i = 0; i < len; i++) { results = string.concat( results, LibString.toString(pointsArray[i][0]), ",", LibString.toString(pointsArray[i][1]), " " ); } return string.concat( results, LibString.toString(pointsArray[len][0]), ",", LibString.toString(pointsArray[len][1]), '"' ); } // allows for a uniform precision to be applied to all points function points(uint256[2][] memory pointsArray, uint256 decimalPrecision) internal pure returns (string memory) { require(pointsArray.length >= 3, "Utils: Array too short"); uint256 len = pointsArray.length - 1; string memory results = 'points="'; for (uint256 i = 0; i < len; i++) { results = string.concat( results, toString(pointsArray[i][0], decimalPrecision), ",", toString(pointsArray[i][1], decimalPrecision), " " ); } return string.concat( results, toString(pointsArray[len][0], decimalPrecision), ",", toString(pointsArray[len][1], decimalPrecision), '"' ); } // checks if two strings are equal function stringsEqual(string memory _a, string memory _b) internal pure returns (bool) { return keccak256(abi.encodePacked(_a)) == keccak256(abi.encodePacked(_b)); } // returns the length of a string in characters function utfStringLength(string memory _str) internal pure returns (uint256 length) { uint256 i = 0; bytes memory string_rep = bytes(_str); while (i < string_rep.length) { if (string_rep[i] >> 7 == 0) { i += 1; } else if (string_rep[i] >> 5 == bytes1(uint8(0x6))) { i += 2; } else if (string_rep[i] >> 4 == bytes1(uint8(0xE))) { i += 3; } else if (string_rep[i] >> 3 == bytes1(uint8(0x1E))) { i += 4; } //For safety else { i += 1; } length++; } } // allows the insertion of a decimal point in the returned string at precision function toString(uint256 value, uint256 precision) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } require(precision <= digits && precision > 0, "Utils: precision invalid"); precision == digits ? digits += 2 : digits++; //adds a space for the decimal point, 2 if it is the whole uint uint256 decimalPlacement = digits - precision - 1; bytes memory buffer = new bytes(digits); buffer[decimalPlacement] = 0x2E; // add the decimal point, ASCII 46/hex 2E if (decimalPlacement == 1) { buffer[0] = 0x30; } while (value != 0) { digits -= 1; if (digits != decimalPlacement) { buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } } return string(buffer); } }
//SPDX-License-Identifier: MIT pragma solidity 0.8.24; import "lib/Solady/src/utils/SSTORE2.sol"; contract FixedAssetReader { struct Asset { uint128 start; uint128 end; } address public immutable pointer; mapping(bytes4 => Asset) public assets; function readAsset(bytes4 _sig) public view returns (string memory) { return string(SSTORE2.read(pointer, uint256(assets[_sig].start), uint256(assets[_sig].end))); } constructor(address _pointer, bytes4[] memory _sigs, Asset[] memory _assets) { pointer = _pointer; require(_sigs.length == _assets.length, "FixedAssetReader: Invalid input"); for (uint256 i = 0; i < _sigs.length; i++) { assets[_sigs[i]] = _assets[i]; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {LibBytes} from "./LibBytes.sol"; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) /// /// @dev Note: /// For performance and bytecode compactness, most of the string operations are restricted to /// byte strings (7-bit ASCII), except where otherwise specified. /// Usage of byte string operations on charsets with runes spanning two or more bytes /// can lead to undefined behavior. library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Goated string storage struct that totally MOGs, no cap, fr. /// Uses less gas and bytecode than Solidity's native string storage. It's meta af. /// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight. struct StringStorage { bytes32 _spacer; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The length of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /// @dev The length of the string is more than 32 bytes. error TooBigForSmallString(); /// @dev The input string must be a 7-bit ASCII. error StringNot7BitASCII(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000; /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000; /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'. uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000; /// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000; /// @dev Lookup for '0123456789'. uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000; /// @dev Lookup for '0123456789abcdefABCDEF'. uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000; /// @dev Lookup for '01234567'. uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000; /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'. uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00; /// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'. uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000; /// @dev Lookup for ' \t\n\r\x0b\x0c'. uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STRING STORAGE OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sets the value of the string storage `$` to `s`. function set(StringStorage storage $, string memory s) internal { LibBytes.set(bytesStorage($), bytes(s)); } /// @dev Sets the value of the string storage `$` to `s`. function setCalldata(StringStorage storage $, string calldata s) internal { LibBytes.setCalldata(bytesStorage($), bytes(s)); } /// @dev Sets the value of the string storage `$` to the empty string. function clear(StringStorage storage $) internal { delete $._spacer; } /// @dev Returns whether the value stored is `$` is the empty string "". function isEmpty(StringStorage storage $) internal view returns (bool) { return uint256($._spacer) & 0xff == uint256(0); } /// @dev Returns the length of the value stored in `$`. function length(StringStorage storage $) internal view returns (uint256) { return LibBytes.length(bytesStorage($)); } /// @dev Returns the value stored in `$`. function get(StringStorage storage $) internal view returns (string memory) { return string(LibBytes.get(bytesStorage($))); } /// @dev Helper to cast `$` to a `BytesStorage`. function bytesStorage(StringStorage storage $) internal pure returns (LibBytes.BytesStorage storage casted) { /// @solidity memory-safe-assembly assembly { casted.slot := $.slot } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. result := add(mload(0x40), 0x80) mstore(0x40, add(result, 0x20)) // Allocate memory. mstore(result, 0) // Zeroize the slot after the string. let end := result // Cache the end of the memory to calculate the length later. let w := not(0) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { result := add(result, w) // `sub(result, 1)`. // Store the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(result, add(48, mod(temp, 10))) temp := div(temp, 10) // Keep dividing `temp` until zero. if iszero(temp) { break } } let n := sub(end, result) result := sub(result, 0x20) // Move the pointer 32 bytes back to make room for the length. mstore(result, n) // Store the length. } } /// @dev Returns the base 10 decimal representation of `value`. function toString(int256 value) internal pure returns (string memory result) { if (value >= 0) return toString(uint256(value)); unchecked { result = toString(~uint256(value) + 1); } /// @solidity memory-safe-assembly assembly { // We still have some spare memory space on the left, // as we have allocated 3 words (96 bytes) for up to 78 digits. let n := mload(result) // Load the string length. mstore(result, 0x2d) // Store the '-' character. result := sub(result, 1) // Move back the string pointer by a byte. mstore(result, add(n, 1)) // Update the string length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `byteCount` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `byteCount * 2 + 2` bytes. /// Reverts if `byteCount` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 byteCount) internal pure returns (string memory result) { result = toHexStringNoPrefix(value, byteCount); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `byteCount` bytes. /// The output is not prefixed with "0x" and is encoded using 2 hexadecimal digits per byte, /// giving a total length of `byteCount * 2` bytes. /// Reverts if `byteCount` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 byteCount) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, `byteCount * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. result := add(mload(0x40), and(add(shl(1, byteCount), 0x42), not(0x1f))) mstore(0x40, add(result, 0x20)) // Allocate memory. mstore(result, 0) // Zeroize the slot after the string. let end := result // Cache the end to calculate the length later. // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let start := sub(result, add(byteCount, byteCount)) let w := not(1) // Tsk. let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { result := add(result, w) // `sub(result, 2)`. mstore8(add(result, 1), mload(and(temp, 15))) mstore8(result, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(xor(result, start)) { break } } if temp { mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`. revert(0x1c, 0x04) } let n := sub(end, result) result := sub(result, 0x20) mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x". /// The output excludes leading "0" from the `toHexString` output. /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`. function toMinimalHexString(uint256 value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present. let n := add(mload(result), 2) // Compute the length. mstore(add(result, o), 0x3078) // Store the "0x" prefix, accounting for leading zero. result := sub(add(result, o), 2) // Move the pointer, accounting for leading zero. mstore(result, sub(n, o)) // Store the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output excludes leading "0" from the `toHexStringNoPrefix` output. /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`. function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present. let n := mload(result) // Get the length. result := add(result, o) // Move the pointer, accounting for leading zero. mstore(result, sub(n, o)) // Store the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. result := add(mload(0x40), 0x80) mstore(0x40, add(result, 0x20)) // Allocate memory. mstore(result, 0) // Zeroize the slot after the string. let end := result // Cache the end to calculate the length later. mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. let w := not(1) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { result := add(result, w) // `sub(result, 2)`. mstore8(add(result, 1), mload(and(temp, 15))) mstore8(result, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } let n := sub(end, result) result := sub(result, 0x20) mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksummed(address value) internal pure returns (string memory result) { result = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(result, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) // Allocate memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(result, 0x80)) mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. result := add(result, 2) mstore(result, 40) // Store the length. let o := add(result, 0x20) mstore(add(o, 40), 0) // Zeroize the slot after the string. value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexString(bytes memory raw) internal pure returns (string memory result) { result = toHexStringNoPrefix(raw); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let n := mload(raw) result := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix. mstore(result, add(n, n)) // Store the length of the output. mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. let o := add(result, 0x20) let end := add(raw, n) for {} iszero(eq(raw, end)) {} { raw := add(raw, 1) mstore8(add(o, 1), mload(and(mload(raw), 15))) mstore8(o, mload(and(shr(4, mload(raw)), 15))) o := add(o, 2) } mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /// @dev Returns if this string is a 7-bit ASCII string. /// (i.e. all characters codes are in [0..127]) function is7BitASCII(string memory s) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := 1 let mask := shl(7, div(not(0), 255)) let n := mload(s) if n { let o := add(s, 0x20) let end := add(o, n) let last := mload(end) mstore(end, 0) for {} 1 {} { if and(mask, mload(o)) { result := 0 break } o := add(o, 0x20) if iszero(lt(o, end)) { break } } mstore(end, last) } } } /// @dev Returns if this string is a 7-bit ASCII string, /// AND all characters are in the `allowed` lookup. /// Note: If `s` is empty, returns true regardless of `allowed`. function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := 1 if mload(s) { let allowed_ := shr(128, shl(128, allowed)) let o := add(s, 0x20) for { let end := add(o, mload(s)) } 1 {} { result := and(result, shr(byte(0, mload(o)), allowed_)) o := add(o, 1) if iszero(and(result, lt(o, end))) { break } } } } } /// @dev Converts the bytes in the 7-bit ASCII string `s` to /// an allowed lookup for use in `is7BitASCII(s, allowed)`. /// To save runtime gas, you can cache the result in an immutable variable. function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { let o := add(s, 0x20) for { let end := add(o, mload(s)) } 1 {} { result := or(result, shl(byte(0, mload(o)), 1)) o := add(o, 1) if iszero(lt(o, end)) { break } } if shr(128, result) { mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`. revert(0x1c, 0x04) } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, byte string operations are restricted // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets. // Usage of byte string operations on charsets with runes spanning two or more bytes // can lead to undefined behavior. /// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`. function replace(string memory subject, string memory needle, string memory replacement) internal pure returns (string memory) { return string(LibBytes.replace(bytes(subject), bytes(needle), bytes(replacement))); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(string memory subject, string memory needle, uint256 from) internal pure returns (uint256) { return LibBytes.indexOf(bytes(subject), bytes(needle), from); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(string memory subject, string memory needle) internal pure returns (uint256) { return LibBytes.indexOf(bytes(subject), bytes(needle), 0); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(string memory subject, string memory needle, uint256 from) internal pure returns (uint256) { return LibBytes.lastIndexOf(bytes(subject), bytes(needle), from); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(string memory subject, string memory needle) internal pure returns (uint256) { return LibBytes.lastIndexOf(bytes(subject), bytes(needle), type(uint256).max); } /// @dev Returns true if `needle` is found in `subject`, false otherwise. function contains(string memory subject, string memory needle) internal pure returns (bool) { return LibBytes.contains(bytes(subject), bytes(needle)); } /// @dev Returns whether `subject` starts with `needle`. function startsWith(string memory subject, string memory needle) internal pure returns (bool) { return LibBytes.startsWith(bytes(subject), bytes(needle)); } /// @dev Returns whether `subject` ends with `needle`. function endsWith(string memory subject, string memory needle) internal pure returns (bool) { return LibBytes.endsWith(bytes(subject), bytes(needle)); } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory) { return string(LibBytes.repeat(bytes(subject), times)); } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory) { return string(LibBytes.slice(bytes(subject), start, end)); } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory) { return string(LibBytes.slice(bytes(subject), start, type(uint256).max)); } /// @dev Returns all the indices of `needle` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory needle) internal pure returns (uint256[] memory) { return LibBytes.indicesOf(bytes(subject), bytes(needle)); } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { bytes[] memory a = LibBytes.split(bytes(subject), bytes(delimiter)); /// @solidity memory-safe-assembly assembly { result := a } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory) { return string(LibBytes.concat(bytes(a), bytes(b))); } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. /// WARNING! This function is only compatible with 7-bit ASCII strings. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let n := mload(subject) if n { result := mload(0x40) let o := add(result, 0x20) let d := sub(subject, result) let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff) for { let end := add(o, n) } 1 {} { let b := byte(0, mload(add(d, o))) mstore8(o, xor(and(shr(b, flags), 0x20), b)) o := add(o, 1) if eq(o, end) { break } } mstore(result, n) // Store the length. mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate memory. } } } /// @dev Returns a string from a small bytes32 string. /// `s` must be null-terminated, or behavior will be undefined. function fromSmallString(bytes32 s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let n := 0 for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'. mstore(result, n) // Store the length. let o := add(result, 0x20) mstore(o, s) // Store the bytes of the string. mstore(add(o, n), 0) // Zeroize the slot after the string. mstore(0x40, add(result, 0x40)) // Allocate memory. } } /// @dev Returns the small string, with all bytes after the first null byte zeroized. function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'. mstore(0x00, s) mstore(result, 0x00) result := mload(0x00) } } /// @dev Returns the string as a normalized null-terminated small string. function toSmallString(string memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(s) if iszero(lt(result, 33)) { mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`. revert(0x1c, 0x04) } result := shl(shl(3, sub(32, result)), mload(add(s, result))) } } /// @dev Returns a lowercased copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let end := add(s, mload(s)) let o := add(result, 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(o, c) o := add(o, 1) continue } let t := shr(248, mload(c)) mstore(o, mload(and(t, 0x1f))) o := add(o, shr(5, t)) } mstore(o, 0) // Zeroize the slot after the string. mstore(result, sub(o, add(result, 0x20))) // Store the length. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes. function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let o := add(result, 0x20) if addDoubleQuotes { mstore8(o, 34) o := add(1, o) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(o, c) o := add(o, 1) continue } mstore8(o, 0x5c) // "\\". mstore8(add(o, 1), c) o := add(o, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(o, mload(0x19)) // "\\u00XX". o := add(o, 6) continue } mstore8(o, 0x5c) // "\\". mstore8(add(o, 1), mload(add(c, 8))) o := add(o, 2) } if addDoubleQuotes { mstore8(o, 34) o := add(1, o) } mstore(o, 0) // Zeroize the slot after the string. mstore(result, sub(o, add(result, 0x20))) // Store the length. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { result = escapeJSON(s, false); } /// @dev Encodes `s` so that it can be safely used in a URI, /// just like `encodeURIComponent` in JavaScript. /// See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent /// See: https://datatracker.ietf.org/doc/html/rfc2396 /// See: https://datatracker.ietf.org/doc/html/rfc3986 function encodeURIComponent(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) // Store "0123456789ABCDEF" in scratch space. // Uppercased to be consistent with JavaScript's implementation. mstore(0x0f, 0x30313233343536373839414243444546) let o := add(result, 0x20) for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // If not in `[0-9A-Z-a-z-_.!~*'()]`. if iszero(and(1, shr(c, 0x47fffffe87fffffe03ff678200000000))) { mstore8(o, 0x25) // '%'. mstore8(add(o, 1), mload(and(shr(4, c), 15))) mstore8(add(o, 2), mload(and(c, 15))) o := add(o, 3) continue } mstore8(o, c) o := add(o, 1) } mstore(result, sub(o, add(result, 0x20))) // Store the length. mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string. function eqs(string memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behavior is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) // Grab the free memory pointer. mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(result, 0) // Zeroize the length slot. mstore(add(result, 0x1f), packed) // Store the length and bytes. mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes. } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLen := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( or( // Load the length and the bytes of `a` and `b`. shl(shl(3, sub(0x1f, aLen)), mload(add(a, aLen))), mload(sub(add(b, 0x1e), aLen))), // `totalLen != 0 && totalLen < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLen, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behavior is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { resultA := mload(0x40) // Grab the free memory pointer. resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retUnpaddedSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retUnpaddedSize), 0) mstore(retStart, 0x20) // Store the return offset. // End the transaction, returning the string. return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize))) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for byte related operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBytes.sol) library LibBytes { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Goated bytes storage struct that totally MOGs, no cap, fr. /// Uses less gas and bytecode than Solidity's native bytes storage. It's meta af. /// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight. struct BytesStorage { bytes32 _spacer; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the bytes. uint256 internal constant NOT_FOUND = type(uint256).max; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STORAGE OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sets the value of the bytes storage `$` to `s`. function set(BytesStorage storage $, bytes memory s) internal { /// @solidity memory-safe-assembly assembly { let n := mload(s) let packed := or(0xff, shl(8, n)) for { let i := 0 } 1 {} { if iszero(gt(n, 0xfe)) { i := 0x1f packed := or(n, shl(8, mload(add(s, i)))) if iszero(gt(n, i)) { break } } let o := add(s, 0x20) mstore(0x00, $.slot) for { let p := keccak256(0x00, 0x20) } 1 {} { sstore(add(p, shr(5, i)), mload(add(o, i))) i := add(i, 0x20) if iszero(lt(i, n)) { break } } break } sstore($.slot, packed) } } /// @dev Sets the value of the bytes storage `$` to `s`. function setCalldata(BytesStorage storage $, bytes calldata s) internal { /// @solidity memory-safe-assembly assembly { let packed := or(0xff, shl(8, s.length)) for { let i := 0 } 1 {} { if iszero(gt(s.length, 0xfe)) { i := 0x1f packed := or(s.length, shl(8, shr(8, calldataload(s.offset)))) if iszero(gt(s.length, i)) { break } } mstore(0x00, $.slot) for { let p := keccak256(0x00, 0x20) } 1 {} { sstore(add(p, shr(5, i)), calldataload(add(s.offset, i))) i := add(i, 0x20) if iszero(lt(i, s.length)) { break } } break } sstore($.slot, packed) } } /// @dev Sets the value of the bytes storage `$` to the empty bytes. function clear(BytesStorage storage $) internal { delete $._spacer; } /// @dev Returns whether the value stored is `$` is the empty bytes "". function isEmpty(BytesStorage storage $) internal view returns (bool) { return uint256($._spacer) & 0xff == uint256(0); } /// @dev Returns the length of the value stored in `$`. function length(BytesStorage storage $) internal view returns (uint256 result) { result = uint256($._spacer); /// @solidity memory-safe-assembly assembly { let n := and(0xff, result) result := or(mul(shr(8, result), eq(0xff, n)), mul(n, iszero(eq(0xff, n)))) } } /// @dev Returns the value stored in `$`. function get(BytesStorage storage $) internal view returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let o := add(result, 0x20) let packed := sload($.slot) let n := shr(8, packed) for { let i := 0 } 1 {} { if iszero(eq(and(packed, 0xff), 0xff)) { mstore(o, packed) n := and(0xff, packed) i := 0x1f if iszero(gt(n, i)) { break } } mstore(0x00, $.slot) for { let p := keccak256(0x00, 0x20) } 1 {} { mstore(add(o, i), sload(add(p, shr(5, i)))) i := add(i, 0x20) if iszero(lt(i, n)) { break } } break } mstore(result, n) // Store the length of the memory. mstore(add(o, n), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(o, n), 0x20)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTES OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`. function replace(bytes memory subject, bytes memory needle, bytes memory replacement) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let needleLen := mload(needle) let replacementLen := mload(replacement) let d := sub(result, subject) // Memory difference. let i := add(subject, 0x20) // Subject bytes pointer. mstore(0x00, add(i, mload(subject))) // End of subject. if iszero(gt(needleLen, mload(subject))) { let subjectSearchEnd := add(sub(mload(0x00), needleLen), 1) let h := 0 // The hash of `needle`. if iszero(lt(needleLen, 0x20)) { h := keccak256(add(needle, 0x20), needleLen) } let s := mload(add(needle, 0x20)) for { let m := shl(3, sub(0x20, and(needleLen, 0x1f))) } 1 {} { let t := mload(i) // Whether the first `needleLen % 32` bytes of `subject` and `needle` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(i, needleLen), h)) { mstore(add(i, d), t) i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let j := 0 } 1 {} { mstore(add(add(i, d), j), mload(add(add(replacement, 0x20), j))) j := add(j, 0x20) if iszero(lt(j, replacementLen)) { break } } d := sub(add(d, replacementLen), needleLen) if needleLen { i := add(i, needleLen) if iszero(lt(i, subjectSearchEnd)) { break } continue } } mstore(add(i, d), t) i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } } } let end := mload(0x00) let n := add(sub(d, add(result, 0x20)), end) // Copy the rest of the bytes one word at a time. for {} lt(i, end) { i := add(i, 0x20) } { mstore(add(i, d), mload(i)) } let o := add(i, d) mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate memory. mstore(result, n) // Store the length. } } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(bytes memory subject, bytes memory needle, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := not(0) // Initialize to `NOT_FOUND`. for { let subjectLen := mload(subject) } 1 {} { if iszero(mload(needle)) { result := from if iszero(gt(from, subjectLen)) { break } result := subjectLen break } let needleLen := mload(needle) let subjectStart := add(subject, 0x20) subject := add(subjectStart, from) let end := add(sub(add(subjectStart, subjectLen), needleLen), 1) let m := shl(3, sub(0x20, and(needleLen, 0x1f))) let s := mload(add(needle, 0x20)) if iszero(and(lt(subject, end), lt(from, subjectLen))) { break } if iszero(lt(needleLen, 0x20)) { for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, needleLen), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(bytes memory subject, bytes memory needle) internal pure returns (uint256) { return indexOf(subject, needle, 0); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(bytes memory subject, bytes memory needle, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := not(0) // Initialize to `NOT_FOUND`. let needleLen := mload(needle) if gt(needleLen, mload(subject)) { break } let w := result let fromMax := sub(mload(subject), needleLen) if iszero(gt(fromMax, from)) { from := fromMax } let end := add(add(subject, 0x20), w) subject := add(add(subject, 0x20), from) if iszero(gt(subject, end)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} { if eq(keccak256(subject, needleLen), h) { result := sub(subject, add(end, 1)) break } subject := add(subject, w) // `sub(subject, 1)`. if iszero(gt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(bytes memory subject, bytes memory needle) internal pure returns (uint256) { return lastIndexOf(subject, needle, type(uint256).max); } /// @dev Returns true if `needle` is found in `subject`, false otherwise. function contains(bytes memory subject, bytes memory needle) internal pure returns (bool) { return indexOf(subject, needle) != NOT_FOUND; } /// @dev Returns whether `subject` starts with `needle`. function startsWith(bytes memory subject, bytes memory needle) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let n := mload(needle) // Just using keccak256 directly is actually cheaper. let t := eq(keccak256(add(subject, 0x20), n), keccak256(add(needle, 0x20), n)) result := lt(gt(n, mload(subject)), t) } } /// @dev Returns whether `subject` ends with `needle`. function endsWith(bytes memory subject, bytes memory needle) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let n := mload(needle) let notInRange := gt(n, mload(subject)) // `subject + 0x20 + max(subject.length - needle.length, 0)`. let t := add(add(subject, 0x20), mul(iszero(notInRange), sub(mload(subject), n))) // Just using keccak256 directly is actually cheaper. result := gt(eq(keccak256(t, n), keccak256(add(needle, 0x20), n)), notInRange) } } /// @dev Returns `subject` repeated `times`. function repeat(bytes memory subject, uint256 times) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { let l := mload(subject) // Subject length. if iszero(or(iszero(times), iszero(l))) { result := mload(0x40) subject := add(subject, 0x20) let o := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let j := 0 } 1 {} { mstore(add(o, j), mload(add(subject, j))) j := add(j, 0x20) if iszero(lt(j, l)) { break } } o := add(o, l) times := sub(times, 1) if iszero(times) { break } } mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate memory. mstore(result, sub(o, add(result, 0x20))) // Store the length. } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(bytes memory subject, uint256 start, uint256 end) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { let l := mload(subject) // Subject length. if iszero(gt(l, end)) { end := l } if iszero(gt(l, start)) { start := l } if lt(start, end) { result := mload(0x40) let n := sub(end, start) let i := add(subject, start) let w := not(0x1f) // Copy the `subject` one word at a time, backwards. for { let j := and(add(n, 0x1f), w) } 1 {} { mstore(add(result, j), mload(add(i, j))) j := add(j, w) // `sub(j, 0x20)`. if iszero(j) { break } } let o := add(add(result, 0x20), n) mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate memory. mstore(result, n) // Store the length. } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the bytes. /// `start` is a byte offset. function slice(bytes memory subject, uint256 start) internal pure returns (bytes memory result) { result = slice(subject, start, type(uint256).max); } /// @dev Reduces the size of `subject` to `n`. /// If `n` is greater than the size of `subject`, this will be a no-op. function truncate(bytes memory subject, uint256 n) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := subject mstore(mul(lt(n, mload(result)), result), n) } } /// @dev Returns a copy of `subject`, with the length reduced to `n`. /// If `n` is greater than the size of `subject`, this will be a no-op. function truncatedCalldata(bytes calldata subject, uint256 n) internal pure returns (bytes calldata result) { /// @solidity memory-safe-assembly assembly { result.offset := subject.offset result.length := xor(n, mul(xor(n, subject.length), lt(subject.length, n))) } } /// @dev Returns all the indices of `needle` in `subject`. /// The indices are byte offsets. function indicesOf(bytes memory subject, bytes memory needle) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let searchLen := mload(needle) if iszero(gt(searchLen, mload(subject))) { result := mload(0x40) let i := add(subject, 0x20) let o := add(result, 0x20) let subjectSearchEnd := add(sub(add(i, mload(subject)), searchLen), 1) let h := 0 // The hash of `needle`. if iszero(lt(searchLen, 0x20)) { h := keccak256(add(needle, 0x20), searchLen) } let s := mload(add(needle, 0x20)) for { let m := shl(3, sub(0x20, and(searchLen, 0x1f))) } 1 {} { let t := mload(i) // Whether the first `searchLen % 32` bytes of `subject` and `needle` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(i, searchLen), h)) { i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } continue } } mstore(o, sub(i, add(subject, 0x20))) // Append to `result`. o := add(o, 0x20) i := add(i, searchLen) // Advance `i` by `searchLen`. if searchLen { if iszero(lt(i, subjectSearchEnd)) { break } continue } } i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } } mstore(result, shr(5, sub(o, add(result, 0x20)))) // Store the length of `result`. // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(o, 0x20)) } } } /// @dev Returns a arrays of bytess based on the `delimiter` inside of the `subject` bytes. function split(bytes memory subject, bytes memory delimiter) internal pure returns (bytes[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) for { let prevIndex := 0 } 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let l := sub(index, prevIndex) mstore(element, l) // Store the length of the element. // Copy the `subject` one word at a time, backwards. for { let o := and(add(l, 0x1f), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } mstore(add(add(element, 0x20), l), 0) // Zeroize the slot after the bytes. // Allocate memory for the length and the bytes, rounded up to a multiple of 32. mstore(0x40, add(element, and(add(l, 0x3f), w))) mstore(indexPtr, element) // Store the `element` into the array. } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated bytes of `a` and `b`. /// Cheaper than `bytes.concat()` and does not de-align the free memory pointer. function concat(bytes memory a, bytes memory b) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let w := not(0x1f) let aLen := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(aLen, 0x20), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLen := mload(b) let output := add(result, aLen) // Copy `b` one word at a time, backwards. for { let o := and(add(bLen, 0x20), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLen := add(aLen, bLen) let last := add(add(result, 0x20), totalLen) mstore(last, 0) // Zeroize the slot after the bytes. mstore(result, totalLen) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate memory. } } /// @dev Returns whether `a` equals `b`. function eq(bytes memory a, bytes memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small bytes. function eqs(bytes memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Directly returns `a` without copying. function directReturn(bytes memory a) internal pure { assembly { // Assumes that the bytes does not start from the scratch space. let retStart := sub(a, 0x20) let retUnpaddedSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the bytes is produced // by a method that doesn't zero right pad. mstore(add(retStart, retUnpaddedSize), 0) mstore(retStart, 0x20) // Store the return offset. // End the transaction, returning the bytes. return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize))) } } /// @dev Returns the word at `offset`, without any bounds checks. /// To load an address, you can use `address(bytes20(load(a, offset)))`. function load(bytes memory a, uint256 offset) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(add(add(a, 0x20), offset)) } } /// @dev Returns the word at `offset`, without any bounds checks. /// To load an address, you can use `address(bytes20(loadCalldata(a, offset)))`. function loadCalldata(bytes calldata a, uint256 offset) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := calldataload(add(a.offset, offset)) } } }
{ "remappings": [ "@chimera/=lib/V2-gov/lib/chimera/src/", "@ensdomains/=lib/V2-gov/lib/v4-core/node_modules/@ensdomains/", "@openzeppelin/=lib/V2-gov/lib/v4-core/lib/openzeppelin-contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "Solady/=lib/Solady/src/", "V2-gov/=lib/V2-gov/", "chimera/=lib/V2-gov/lib/chimera/src/", "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-gas-snapshot/=lib/V2-gov/lib/v4-core/lib/forge-gas-snapshot/src/", "forge-std/=lib/forge-std/src/", "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/", "hardhat/=lib/V2-gov/lib/v4-core/node_modules/hardhat/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/V2-gov/lib/openzeppelin-contracts/", "solmate/=lib/V2-gov/lib/v4-core/lib/solmate/src/", "v4-core/=lib/V2-gov/lib/v4-core/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
[{"inputs":[{"internalType":"contract IAddressesRegistry","name":"_addressesRegistry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_recordedDebtSum","type":"uint256"}],"name":"ActivePoolBoldDebtUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_collBalance","type":"uint256"}],"name":"ActivePoolCollBalanceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_newBorrowerOperationsAddress","type":"address"}],"name":"BorrowerOperationsAddressChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_newCollTokenAddress","type":"address"}],"name":"CollTokenAddressChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_newDefaultPoolAddress","type":"address"}],"name":"DefaultPoolAddressChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_newStabilityPoolAddress","type":"address"}],"name":"StabilityPoolAddressChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_newTroveManagerAddress","type":"address"}],"name":"TroveManagerAddressChanged","type":"event"},{"inputs":[],"name":"NAME","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"accountForReceivedColl","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"aggBatchManagementFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"aggRecordedDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"aggWeightedBatchManagementFeeSum","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"aggWeightedDebtSum","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"boldToken","outputs":[{"internalType":"contract IBoldToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"borrowerOperationsAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calcPendingAggBatchManagementFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calcPendingAggInterest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calcPendingSPYield","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"collToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultPoolAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBoldDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCollBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"appliedRedistBoldDebtGain","type":"uint256"},{"internalType":"uint256","name":"appliedRedistCollGain","type":"uint256"},{"internalType":"uint256","name":"collIncrease","type":"uint256"},{"internalType":"uint256","name":"collDecrease","type":"uint256"},{"internalType":"uint256","name":"debtIncrease","type":"uint256"},{"internalType":"uint256","name":"debtDecrease","type":"uint256"},{"internalType":"uint256","name":"newWeightedRecordedDebt","type":"uint256"},{"internalType":"uint256","name":"oldWeightedRecordedDebt","type":"uint256"},{"internalType":"uint256","name":"upfrontFee","type":"uint256"},{"internalType":"uint256","name":"batchAccruedManagementFee","type":"uint256"},{"internalType":"uint256","name":"newWeightedRecordedBatchManagementFee","type":"uint256"},{"internalType":"uint256","name":"oldWeightedRecordedBatchManagementFee","type":"uint256"}],"internalType":"struct TroveChange","name":"_troveChange","type":"tuple"}],"name":"getNewApproxAvgInterestRateFromTroveChange","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hasBeenShutDown","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"interestRouter","outputs":[{"internalType":"contract IInterestRouter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastAggBatchManagementFeesUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastAggUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintAggInterest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"appliedRedistBoldDebtGain","type":"uint256"},{"internalType":"uint256","name":"appliedRedistCollGain","type":"uint256"},{"internalType":"uint256","name":"collIncrease","type":"uint256"},{"internalType":"uint256","name":"collDecrease","type":"uint256"},{"internalType":"uint256","name":"debtIncrease","type":"uint256"},{"internalType":"uint256","name":"debtDecrease","type":"uint256"},{"internalType":"uint256","name":"newWeightedRecordedDebt","type":"uint256"},{"internalType":"uint256","name":"oldWeightedRecordedDebt","type":"uint256"},{"internalType":"uint256","name":"upfrontFee","type":"uint256"},{"internalType":"uint256","name":"batchAccruedManagementFee","type":"uint256"},{"internalType":"uint256","name":"newWeightedRecordedBatchManagementFee","type":"uint256"},{"internalType":"uint256","name":"oldWeightedRecordedBatchManagementFee","type":"uint256"}],"internalType":"struct TroveChange","name":"_troveChange","type":"tuple"},{"internalType":"address","name":"_batchAddress","type":"address"}],"name":"mintAggInterestAndAccountForTroveChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"appliedRedistBoldDebtGain","type":"uint256"},{"internalType":"uint256","name":"appliedRedistCollGain","type":"uint256"},{"internalType":"uint256","name":"collIncrease","type":"uint256"},{"internalType":"uint256","name":"collDecrease","type":"uint256"},{"internalType":"uint256","name":"debtIncrease","type":"uint256"},{"internalType":"uint256","name":"debtDecrease","type":"uint256"},{"internalType":"uint256","name":"newWeightedRecordedDebt","type":"uint256"},{"internalType":"uint256","name":"oldWeightedRecordedDebt","type":"uint256"},{"internalType":"uint256","name":"upfrontFee","type":"uint256"},{"internalType":"uint256","name":"batchAccruedManagementFee","type":"uint256"},{"internalType":"uint256","name":"newWeightedRecordedBatchManagementFee","type":"uint256"},{"internalType":"uint256","name":"oldWeightedRecordedBatchManagementFee","type":"uint256"}],"internalType":"struct TroveChange","name":"_troveChange","type":"tuple"},{"internalType":"address","name":"_batchAddress","type":"address"}],"name":"mintBatchManagementFeeAndAccountForChange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"receiveColl","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"sendColl","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"sendCollToDefaultPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setShutdownFlag","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"shutdownTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stabilityPool","outputs":[{"internalType":"contract IBoldRewardsReceiver","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"troveManagerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
61016060405234801562000011575f80fd5b5060405162001a8038038062001a80833981016040819052620000349162000561565b806001600160a01b03166331b8c9466040518163ffffffff1660e01b8152600401602060405180830381865afa15801562000071573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019062000097919062000561565b6001600160a01b03166080816001600160a01b031681525050806001600160a01b03166377553ad46040518163ffffffff1660e01b8152600401602060405180830381865afa158015620000ed573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019062000113919062000561565b6001600160a01b031660a0816001600160a01b031681525050806001600160a01b0316633d83908a6040518163ffffffff1660e01b8152600401602060405180830381865afa15801562000169573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906200018f919062000561565b6001600160a01b031660c0816001600160a01b031681525050806001600160a01b031663048c661d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015620001e5573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906200020b919062000561565b6001600160a01b0316610140816001600160a01b031681525050806001600160a01b0316633cc742256040518163ffffffff1660e01b8152600401602060405180830381865afa15801562000262573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019062000288919062000561565b6001600160a01b031660e0816001600160a01b031681525050806001600160a01b031663d0ee2ace6040518163ffffffff1660e01b8152600401602060405180830381865afa158015620002de573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019062000304919062000561565b6001600160a01b0316610120816001600160a01b031681525050806001600160a01b031663630afce56040518163ffffffff1660e01b8152600401602060405180830381865afa1580156200035b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019062000381919062000561565b6001600160a01b0390811661010052608051604051911681527f8adeca1d26ce63eb9fb5b9362155b69fbb631209bfc0dddb3d75d96735eae23b9060200160405180910390a160a0516040516001600160a01b0390911681527f3ca631ffcd2a9b5d9ae18543fc82f58eb4ca33af9e6ab01b7a8e95331e6ed9859060200160405180910390a160c0516040516001600160a01b0390911681527f143219c9e69b09e07e095fcc889b43d8f46ca892bba65f08dc3a0050869a56789060200160405180910390a1610140516040516001600160a01b0390911681527f82966d27eea39b038ee0fa30cd16532bb24f6e65d31cb58fb227aa5766cdcc7f9060200160405180910390a160e0516040516001600160a01b0390911681527f5ee0cae2f063ed938bb55046f6a932fb6ae792bf43624806bb90abe68a50be9b9060200160405180910390a160805160e05160405163095ea7b360e01b81526001600160a01b0391821660048201525f19602482015291169063095ea7b3906044016020604051808303815f875af11580156200051b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019062000541919062000586565b5050620005a7565b6001600160a01b03811681146200055e575f80fd5b50565b5f6020828403121562000572575f80fd5b81516200057f8162000549565b9392505050565b5f6020828403121562000597575f80fd5b815180151581146200057f575f80fd5b60805160a05160c05160e0516101005161012051610140516114026200067e5f395f81816101f00152818161087501528181610a2f01528181610ac90152610fe401525f818161040d015261098501525f81816102e0015281816109b701528181610a5e0152610ea301525f81816103a3015281816107800152610b7401525f81816102b901528181610c9a01528181610d530152610fb101525f81816103d30152818161084301528181610b4201528181610d210152610f7f01525f81816102680152818161062d015261072e01526114025ff3fe608060405234801561000f575f80fd5b50600436106101d1575f3560e01c806371d4eb21116100fe578063aac1846f1161009e578063d0ee2ace1161006e578063d0ee2ace14610408578063dd9fbcb81461042f578063f6e413f514610442578063fa160c051461044b575f80fd5b8063aac1846f1461039e578063ac8bbc49146103c5578063b7f8cf9b146103ce578063c2283f1f146103f5575f80fd5b806385fe37a3116100d957806385fe37a3146103395780638d5c1d4c1461034c5780639f4e511e14610355578063a3f4df7e14610368575f80fd5b806371d4eb211461030a578063759f9dec1461031d57806383b60e4d14610326575f80fd5b80633db6c94a11610174578063585690811161014457806358569081146102ab5780635a4d28bb146102b4578063630afce5146102db5780636d8f962d14610302575f80fd5b80633db6c94a1461028a57806342635a9514610292578063455079981461029b5780634ba89fa1146102a3575f80fd5b806310a985c1116101af57806310a985c11461023d5780631bfa0d7b146102465780632bcbcbcb1461025057806331b8c94614610263575f80fd5b80630367b302146101d5578063048c661d146101eb57806306ff8dfb1461022a575b5f80fd5b5f545b6040519081526020015b60405180910390f35b6102127f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020016101e2565b60045460405190151581526020016101e2565b6101d860065481565b61024e610453565b005b61024e61025e366004611155565b61047b565b6102127f000000000000000000000000000000000000000000000000000000000000000081565b6101d861048f565b6101d860025481565b6101d86104dc565b6101d8610511565b6101d860045481565b6102127f000000000000000000000000000000000000000000000000000000000000000081565b6102127f000000000000000000000000000000000000000000000000000000000000000081565b61024e610558565b61024e61031836600461119e565b610566565b6101d860035481565b61024e610334366004611155565b61060f565b6101d86103473660046111d2565b610655565b6101d860015481565b61024e6103633660046111ed565b610710565b6103916040518060400160405280600a8152602001691058dd1a5d99541bdbdb60b21b81525081565b6040516101e29190611215565b6102127f000000000000000000000000000000000000000000000000000000000000000081565b6101d860075481565b6102127f000000000000000000000000000000000000000000000000000000000000000081565b61024e610403366004611155565b610759565b6102127f000000000000000000000000000000000000000000000000000000000000000081565b61024e61043d36600461119e565b6107e2565b6101d860055481565b6101d86107fc565b61045b610838565b6104645f610910565b60015f8282546104749190611275565b9091555050565b610483610b37565b61048c81610bfc565b50565b5f6004545f1461049e57505f90565b6104d7600354426104af9190611288565b6002546104bc919061129b565b6104d2670de0b6b3a76400006301e1338061129b565b610c48565b905090565b5f6104e5610511565b6005546104f061048f565b6001546104fd9190611275565b6105079190611275565b6104d79190611275565b5f806004545f036105225742610526565b6004545b90505f61053560075483610c7d565b90506105516105448284611288565b6006546104bc919061129b565b9250505090565b610560610c8f565b42600455565b61056e610d16565b6001600160a01b038116156105955761059561058f368490038401846112e8565b82610df1565b6001546105a6610100840135610910565b6105b09082611275565b90506105bd833582611275565b90506105cd608084013582611275565b90506105dd60a084013582611288565b60018190556002549091506105f660c085013582611275565b905061060660e085013582611288565b60025550505050565b610617610b37565b61062081610bfc565b61048c6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016333084610f07565b5f6101008201351561066957610669611385565b6004541561067857505f919050565b60015461068361048f565b61068d9082611275565b905061069a833582611275565b90506106aa608084013582611275565b90506106bb61012084013582611275565b90506106cb60a084013582611288565b6002549091506106df60c085013582611275565b90506106ef60e085013582611288565b90505f82116106fe575f610708565b61070882826113ad565b949350505050565b610718610f74565b61072181611094565b6107556001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001683836110a2565b5050565b610761610c8f565b61076a81611094565b6040516383b60e4d60e01b8152600481018290527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906383b60e4d906024015f604051808303815f87803b1580156107c9575f80fd5b505af11580156107db573d5f803e3d5ffd5b5050505050565b6107ea610c8f565b61075561058f368490038401846112e8565b5f670de0b6b3a76400006108116064826113ad565b61081c90604861129b565b61082461048f565b61082e919061129b565b6104d791906113ad565b336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614806108975750336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016145b61090e5760405162461bcd60e51b815260206004820152603e60248201527f416374697665506f6f6c3a2043616c6c6572206973206e6f7420426f72726f7760448201527f65724f7065726174696f6e73206e6f722053746162696c697479506f6f6c000060648201526084015b60405180910390fd5b565b5f8161091a61048f565b6109249190611275565b90508015610b2e575f670de0b6b3a7640000826109426064836113ad565b61094d90604861129b565b610957919061129b565b61096191906113ad565b90505f61096e8284611288565b6040516340c10f1960e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018390529192507f0000000000000000000000000000000000000000000000000000000000000000909116906340c10f19906044015f604051808303815f87803b1580156109fa575f80fd5b505af1158015610a0c573d5f803e3d5ffd5b505050505f821115610b2b576040516340c10f1960e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018490527f000000000000000000000000000000000000000000000000000000000000000016906340c10f19906044015f604051808303815f87803b158015610a9f575f80fd5b505af1158015610ab1573d5f803e3d5ffd5b505060405163affb466960e01b8152600481018590527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316925063affb466991506024015f604051808303815f87803b158015610b14575f80fd5b505af1158015610b26573d5f803e3d5ffd5b505050505b50505b42600355919050565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480610b965750336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016145b61090e5760405162461bcd60e51b815260206004820152603160248201527f416374697665506f6f6c3a2043616c6c6572206973206e65697468657220424f604482015270081b9bdc88111959985d5b1d08141bdbdb607a1b6064820152608401610905565b5f815f54610c0a9190611275565b5f8190556040518181529091507f9bbe217b4113a0fc957e51f8db99c9989f520e3c6bcca7a8e12c6316eaf995bf9060200160405180910390a15050565b5f815f03610c5a57610c5a60126110d8565b816001840381610c6c57610c6c611399565b046001018315150290505b92915050565b5f8282188284100282185b9392505050565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161461090e5760405162461bcd60e51b815260206004820152602660248201527f416374697665506f6f6c3a2043616c6c6572206973206e6f742054726f76654d60448201526530b730b3b2b960d11b6064820152608401610905565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480610d755750336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016145b61090e5760405162461bcd60e51b815260206004820152604160248201527f416374697665506f6f6c3a2043616c6c6572206973206e65697468657220426f60448201527f72726f7765724f7065726174696f6e73206e6f722054726f76654d616e6167656064820152603960f91b608482015260a401610905565b81610120015160015f828254610e079190611275565b9091555050600554610e17610511565b610e219082611275565b905082610120015181610e349190611288565b600581905560065461014085015191925090610e509082611275565b905083610160015181610e639190611288565b600681905561012085015190915015610efd576101208401516040516340c10f1960e01b81526001600160a01b03858116600483015260248201929092527f0000000000000000000000000000000000000000000000000000000000000000909116906340c10f19906044015f604051808303815f87803b158015610ee6575f80fd5b505af1158015610ef8573d5f803e3d5ffd5b505050505b5050426007555050565b6040516001600160a01b038481166024830152838116604483015260648201839052610f6e9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506110e9565b50505050565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480610fd35750336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016145b806110065750336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016145b61090e5760405162461bcd60e51b815260206004820152605360248201527f416374697665506f6f6c3a2043616c6c6572206973206e65697468657220426f60448201527f72726f7765724f7065726174696f6e73206e6f722054726f76654d616e6167656064820152721c881b9bdc8814dd18589a5b1a5d1e541bdbdb606a1b608482015260a401610905565b5f815f54610c0a9190611288565b6040516001600160a01b038381166024830152604482018390526110d391859182169063a9059cbb90606401610f3c565b505050565b634e487b715f52806020526024601cfd5b5f8060205f8451602086015f885af180611108576040513d5f823e3d81fd5b50505f513d9150811561111f57806001141561112c565b6001600160a01b0384163b155b15610f6e57604051635274afe760e01b81526001600160a01b0385166004820152602401610905565b5f60208284031215611165575f80fd5b5035919050565b5f610180828403121561117d575f80fd5b50919050565b80356001600160a01b0381168114611199575f80fd5b919050565b5f806101a083850312156111b0575f80fd5b6111ba848461116c565b91506111c96101808401611183565b90509250929050565b5f61018082840312156111e3575f80fd5b610c88838361116c565b5f80604083850312156111fe575f80fd5b61120783611183565b946020939093013593505050565b5f602080835283518060208501525f5b8181101561124157858101830151858201604001528201611225565b505f604082860101526040601f19601f8301168501019250505092915050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610c7757610c77611261565b81810381811115610c7757610c77611261565b8082028115828204841417610c7757610c77611261565b604051610180810167ffffffffffffffff811182821017156112e257634e487b7160e01b5f52604160045260245ffd5b60405290565b5f61018082840312156112f9575f80fd5b6113016112b2565b823581526020830135602082015260408301356040820152606083013560608201526080830135608082015260a083013560a082015260c083013560c082015260e083013560e08201526101008084013581830152506101208084013581830152506101408084013581830152506101608084013581830152508091505092915050565b634e487b7160e01b5f52600160045260245ffd5b634e487b7160e01b5f52601260045260245ffd5b5f826113c757634e487b7160e01b5f52601260045260245ffd5b50049056fea26469706673582212200595c0ffdcadda7a7861be4162571adbfae08785228a10e023f07ac87f084a9c64736f6c63430008180033000000000000000000000000ba0f2b2cae0f71997c758ea4e266f6f0fff7d8a7
Deployed Bytecode
0x608060405234801561000f575f80fd5b50600436106101d1575f3560e01c806371d4eb21116100fe578063aac1846f1161009e578063d0ee2ace1161006e578063d0ee2ace14610408578063dd9fbcb81461042f578063f6e413f514610442578063fa160c051461044b575f80fd5b8063aac1846f1461039e578063ac8bbc49146103c5578063b7f8cf9b146103ce578063c2283f1f146103f5575f80fd5b806385fe37a3116100d957806385fe37a3146103395780638d5c1d4c1461034c5780639f4e511e14610355578063a3f4df7e14610368575f80fd5b806371d4eb211461030a578063759f9dec1461031d57806383b60e4d14610326575f80fd5b80633db6c94a11610174578063585690811161014457806358569081146102ab5780635a4d28bb146102b4578063630afce5146102db5780636d8f962d14610302575f80fd5b80633db6c94a1461028a57806342635a9514610292578063455079981461029b5780634ba89fa1146102a3575f80fd5b806310a985c1116101af57806310a985c11461023d5780631bfa0d7b146102465780632bcbcbcb1461025057806331b8c94614610263575f80fd5b80630367b302146101d5578063048c661d146101eb57806306ff8dfb1461022a575b5f80fd5b5f545b6040519081526020015b60405180910390f35b6102127f000000000000000000000000d8581c03debf17d5a9530ed5862119898eb627b581565b6040516001600160a01b0390911681526020016101e2565b60045460405190151581526020016101e2565b6101d860065481565b61024e610453565b005b61024e61025e366004611155565b61047b565b6102127f0000000000000000000000004223f8af31e07815f1a7437336f093f37c065efe81565b6101d861048f565b6101d860025481565b6101d86104dc565b6101d8610511565b6101d860045481565b6102127f00000000000000000000000076bd25aabf9f6ce46fe44b0140bced0bc831847b81565b6102127f000000000000000000000000862e98428c173b11d730d65b896bafb08c702e9581565b61024e610558565b61024e61031836600461119e565b610566565b6101d860035481565b61024e610334366004611155565b61060f565b6101d86103473660046111d2565b610655565b6101d860015481565b61024e6103633660046111ed565b610710565b6103916040518060400160405280600a8152602001691058dd1a5d99541bdbdb60b21b81525081565b6040516101e29190611215565b6102127f000000000000000000000000934407c0ab4d65aea9272d374952201128f492e181565b6101d860075481565b6102127f000000000000000000000000c23e2887e548aa08fed067b4bce0080fe811299281565b61024e610403366004611155565b610759565b6102127f00000000000000000000000035342222b25131d0027f20aea09559dfebcdc30b81565b61024e61043d36600461119e565b6107e2565b6101d860055481565b6101d86107fc565b61045b610838565b6104645f610910565b60015f8282546104749190611275565b9091555050565b610483610b37565b61048c81610bfc565b50565b5f6004545f1461049e57505f90565b6104d7600354426104af9190611288565b6002546104bc919061129b565b6104d2670de0b6b3a76400006301e1338061129b565b610c48565b905090565b5f6104e5610511565b6005546104f061048f565b6001546104fd9190611275565b6105079190611275565b6104d79190611275565b5f806004545f036105225742610526565b6004545b90505f61053560075483610c7d565b90506105516105448284611288565b6006546104bc919061129b565b9250505090565b610560610c8f565b42600455565b61056e610d16565b6001600160a01b038116156105955761059561058f368490038401846112e8565b82610df1565b6001546105a6610100840135610910565b6105b09082611275565b90506105bd833582611275565b90506105cd608084013582611275565b90506105dd60a084013582611288565b60018190556002549091506105f660c085013582611275565b905061060660e085013582611288565b60025550505050565b610617610b37565b61062081610bfc565b61048c6001600160a01b037f0000000000000000000000004223f8af31e07815f1a7437336f093f37c065efe16333084610f07565b5f6101008201351561066957610669611385565b6004541561067857505f919050565b60015461068361048f565b61068d9082611275565b905061069a833582611275565b90506106aa608084013582611275565b90506106bb61012084013582611275565b90506106cb60a084013582611288565b6002549091506106df60c085013582611275565b90506106ef60e085013582611288565b90505f82116106fe575f610708565b61070882826113ad565b949350505050565b610718610f74565b61072181611094565b6107556001600160a01b037f0000000000000000000000004223f8af31e07815f1a7437336f093f37c065efe1683836110a2565b5050565b610761610c8f565b61076a81611094565b6040516383b60e4d60e01b8152600481018290527f000000000000000000000000934407c0ab4d65aea9272d374952201128f492e16001600160a01b0316906383b60e4d906024015f604051808303815f87803b1580156107c9575f80fd5b505af11580156107db573d5f803e3d5ffd5b5050505050565b6107ea610c8f565b61075561058f368490038401846112e8565b5f670de0b6b3a76400006108116064826113ad565b61081c90604861129b565b61082461048f565b61082e919061129b565b6104d791906113ad565b336001600160a01b037f000000000000000000000000c23e2887e548aa08fed067b4bce0080fe81129921614806108975750336001600160a01b037f000000000000000000000000d8581c03debf17d5a9530ed5862119898eb627b516145b61090e5760405162461bcd60e51b815260206004820152603e60248201527f416374697665506f6f6c3a2043616c6c6572206973206e6f7420426f72726f7760448201527f65724f7065726174696f6e73206e6f722053746162696c697479506f6f6c000060648201526084015b60405180910390fd5b565b5f8161091a61048f565b6109249190611275565b90508015610b2e575f670de0b6b3a7640000826109426064836113ad565b61094d90604861129b565b610957919061129b565b61096191906113ad565b90505f61096e8284611288565b6040516340c10f1960e01b81526001600160a01b037f00000000000000000000000035342222b25131d0027f20aea09559dfebcdc30b81166004830152602482018390529192507f000000000000000000000000862e98428c173b11d730d65b896bafb08c702e95909116906340c10f19906044015f604051808303815f87803b1580156109fa575f80fd5b505af1158015610a0c573d5f803e3d5ffd5b505050505f821115610b2b576040516340c10f1960e01b81526001600160a01b037f000000000000000000000000d8581c03debf17d5a9530ed5862119898eb627b581166004830152602482018490527f000000000000000000000000862e98428c173b11d730d65b896bafb08c702e9516906340c10f19906044015f604051808303815f87803b158015610a9f575f80fd5b505af1158015610ab1573d5f803e3d5ffd5b505060405163affb466960e01b8152600481018590527f000000000000000000000000d8581c03debf17d5a9530ed5862119898eb627b56001600160a01b0316925063affb466991506024015f604051808303815f87803b158015610b14575f80fd5b505af1158015610b26573d5f803e3d5ffd5b505050505b50505b42600355919050565b336001600160a01b037f000000000000000000000000c23e2887e548aa08fed067b4bce0080fe8112992161480610b965750336001600160a01b037f000000000000000000000000934407c0ab4d65aea9272d374952201128f492e116145b61090e5760405162461bcd60e51b815260206004820152603160248201527f416374697665506f6f6c3a2043616c6c6572206973206e65697468657220424f604482015270081b9bdc88111959985d5b1d08141bdbdb607a1b6064820152608401610905565b5f815f54610c0a9190611275565b5f8190556040518181529091507f9bbe217b4113a0fc957e51f8db99c9989f520e3c6bcca7a8e12c6316eaf995bf9060200160405180910390a15050565b5f815f03610c5a57610c5a60126110d8565b816001840381610c6c57610c6c611399565b046001018315150290505b92915050565b5f8282188284100282185b9392505050565b336001600160a01b037f00000000000000000000000076bd25aabf9f6ce46fe44b0140bced0bc831847b161461090e5760405162461bcd60e51b815260206004820152602660248201527f416374697665506f6f6c3a2043616c6c6572206973206e6f742054726f76654d60448201526530b730b3b2b960d11b6064820152608401610905565b336001600160a01b037f000000000000000000000000c23e2887e548aa08fed067b4bce0080fe8112992161480610d755750336001600160a01b037f00000000000000000000000076bd25aabf9f6ce46fe44b0140bced0bc831847b16145b61090e5760405162461bcd60e51b815260206004820152604160248201527f416374697665506f6f6c3a2043616c6c6572206973206e65697468657220426f60448201527f72726f7765724f7065726174696f6e73206e6f722054726f76654d616e6167656064820152603960f91b608482015260a401610905565b81610120015160015f828254610e079190611275565b9091555050600554610e17610511565b610e219082611275565b905082610120015181610e349190611288565b600581905560065461014085015191925090610e509082611275565b905083610160015181610e639190611288565b600681905561012085015190915015610efd576101208401516040516340c10f1960e01b81526001600160a01b03858116600483015260248201929092527f000000000000000000000000862e98428c173b11d730d65b896bafb08c702e95909116906340c10f19906044015f604051808303815f87803b158015610ee6575f80fd5b505af1158015610ef8573d5f803e3d5ffd5b505050505b5050426007555050565b6040516001600160a01b038481166024830152838116604483015260648201839052610f6e9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506110e9565b50505050565b336001600160a01b037f000000000000000000000000c23e2887e548aa08fed067b4bce0080fe8112992161480610fd35750336001600160a01b037f00000000000000000000000076bd25aabf9f6ce46fe44b0140bced0bc831847b16145b806110065750336001600160a01b037f000000000000000000000000d8581c03debf17d5a9530ed5862119898eb627b516145b61090e5760405162461bcd60e51b815260206004820152605360248201527f416374697665506f6f6c3a2043616c6c6572206973206e65697468657220426f60448201527f72726f7765724f7065726174696f6e73206e6f722054726f76654d616e6167656064820152721c881b9bdc8814dd18589a5b1a5d1e541bdbdb606a1b608482015260a401610905565b5f815f54610c0a9190611288565b6040516001600160a01b038381166024830152604482018390526110d391859182169063a9059cbb90606401610f3c565b505050565b634e487b715f52806020526024601cfd5b5f8060205f8451602086015f885af180611108576040513d5f823e3d81fd5b50505f513d9150811561111f57806001141561112c565b6001600160a01b0384163b155b15610f6e57604051635274afe760e01b81526001600160a01b0385166004820152602401610905565b5f60208284031215611165575f80fd5b5035919050565b5f610180828403121561117d575f80fd5b50919050565b80356001600160a01b0381168114611199575f80fd5b919050565b5f806101a083850312156111b0575f80fd5b6111ba848461116c565b91506111c96101808401611183565b90509250929050565b5f61018082840312156111e3575f80fd5b610c88838361116c565b5f80604083850312156111fe575f80fd5b61120783611183565b946020939093013593505050565b5f602080835283518060208501525f5b8181101561124157858101830151858201604001528201611225565b505f604082860101526040601f19601f8301168501019250505092915050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610c7757610c77611261565b81810381811115610c7757610c77611261565b8082028115828204841417610c7757610c77611261565b604051610180810167ffffffffffffffff811182821017156112e257634e487b7160e01b5f52604160045260245ffd5b60405290565b5f61018082840312156112f9575f80fd5b6113016112b2565b823581526020830135602082015260408301356040820152606083013560608201526080830135608082015260a083013560a082015260c083013560c082015260e083013560e08201526101008084013581830152506101208084013581830152506101408084013581830152506101608084013581830152508091505092915050565b634e487b7160e01b5f52600160045260245ffd5b634e487b7160e01b5f52601260045260245ffd5b5f826113c757634e487b7160e01b5f52601260045260245ffd5b50049056fea26469706673582212200595c0ffdcadda7a7861be4162571adbfae08785228a10e023f07ac87f084a9c64736f6c63430008180033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba0f2b2cae0f71997c758ea4e266f6f0fff7d8a7
-----Decoded View---------------
Arg [0] : _addressesRegistry (address): 0xbA0F2B2caE0F71997c758Ea4e266f6F0fff7D8a7
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba0f2b2cae0f71997c758ea4e266f6f0fff7d8a7
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.