Sonic Blaze Testnet

Contract

0xfdBcdE73ABD3CeeC50358E6f63E321d691e56Ace

Overview

S Balance

Sonic Blaze LogoSonic Blaze LogoSonic Blaze Logo0 S

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Mint Nft146619142025-01-22 12:59:5027 days ago1737550790IN
0xfdBcdE73...691e56Ace
0 S0.000264361.1

Latest 1 internal transaction

Parent Transaction Hash Block From To
146619142025-01-22 12:59:5027 days ago1737550790
0xfdBcdE73...691e56Ace
0 S
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
WhitelistMerkleMinter

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
No with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 8 : whitelistMerkleMinter.sol
// SPDX-License-Identifier: MIT LICENSE
pragma solidity ^0.8.24;

import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "./interfaces/ISonicNft.sol";

contract WhitelistMerkleMinter {
    address private sonicNft;
    address private _owner;
    bytes32 private merkleRoot;

    mapping(address => bool) public hasMinted;

    constructor(address _sonicNft, bytes32 _merkleRoot) {
        sonicNft = _sonicNft;
        merkleRoot = _merkleRoot;
        _owner = msg.sender;
    }

    // modifiers
    modifier onlyOwner {
        require(_owner == msg.sender, "only owner function");
        _;
    }

    modifier hasNotMinted {
        require(hasMinted[msg.sender] == false, "address has already minted");
        _;
    }

    modifier validProof (bytes32[] memory _proof) {
        bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
        require(MerkleProof.verify(_proof, merkleRoot, leaf), "Invalid Proof");
        _;
    }

    function testProof(bytes32[] memory _proof, address _address) public view returns (bool) {
        bytes32 leaf = keccak256(abi.encodePacked(_address));
        require(MerkleProof.verify(_proof, merkleRoot, leaf), "Invalid Proof");

        return true;
    }

    // transactions
    function mintNft(bytes32[] memory _proof, uint256 _nftType) external validProof(_proof) hasNotMinted {
        ISonicNft sonicNftContract = ISonicNft(sonicNft);
        hasMinted[msg.sender] = true;
        sonicNftContract.mintNft(_nftType, msg.sender);
    }

    // owner functions
    function updateRoot(bytes32 _root) external onlyOwner {
        merkleRoot = _root;
    }
    function updateNftAddress(address _address) external onlyOwner {
        sonicNft = _address;
    }
    function transferOwner(address _newOwner) external onlyOwner {
        _owner = _newOwner;
    }
}

File 2 of 8 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 3 of 8 : MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.20;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

File 4 of 8 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 5 of 8 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 6 of 8 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 7 of 8 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 8 of 8 : ISonicNft.sol
// SPDX-License-Identifier: MIT LICENSE
pragma solidity ^0.8.24;

import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";

interface ISonicNft is IERC721 {
    struct RewardTypeMetadata {
        string name;
        string description;
        string imageUrl;
    }

    function totalMinted() external view returns (uint256);

    function mintNft(uint256 _nftType, address _receiver) external;

    function burnNft(uint256 _tokenId) external;

    function updateNFTTypeMetadata(uint256 _tokenType, RewardTypeMetadata memory _data) external;
}

Settings
{
  "evmVersion": "paris",
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_sonicNft","type":"address"},{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasMinted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"},{"internalType":"uint256","name":"_nftType","type":"uint256"}],"name":"mintNft","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"},{"internalType":"address","name":"_address","type":"address"}],"name":"testProof","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"transferOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"updateNftAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_root","type":"bytes32"}],"name":"updateRoot","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60806040523480156200001157600080fd5b5060405162000e6738038062000e6783398181016040528101906200003791906200016c565b816000806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508060028190555033600160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505050620001b3565b600080fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000620000f982620000cc565b9050919050565b6200010b81620000ec565b81146200011757600080fd5b50565b6000815190506200012b8162000100565b92915050565b6000819050919050565b620001468162000131565b81146200015257600080fd5b50565b60008151905062000166816200013b565b92915050565b60008060408385031215620001865762000185620000c7565b5b600062000196858286016200011a565b9250506020620001a98582860162000155565b9150509250929050565b610ca480620001c36000396000f3fe608060405234801561001057600080fd5b50600436106100625760003560e01c806321ff99701461006757806338e21cce146100835780634fb2e45d146100b35780635eb4ff10146100cf578063889af3f9146100ff578063e5eb7ae81461011b575b600080fd5b610081600480360381019061007c919061070b565b610137565b005b61009d60048036038101906100989190610796565b6101d1565b6040516100aa91906107de565b60405180910390f35b6100cd60048036038101906100c89190610796565b6101f1565b005b6100e960048036038101906100e49190610952565b6102c5565b6040516100f691906107de565b60405180910390f35b610119600480360381019061011491906109e4565b610348565b005b61013560048036038101906101309190610796565b610545565b005b3373ffffffffffffffffffffffffffffffffffffffff16600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146101c7576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016101be90610a9d565b60405180910390fd5b8060028190555050565b60036020528060005260406000206000915054906101000a900460ff1681565b3373ffffffffffffffffffffffffffffffffffffffff16600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610281576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161027890610a9d565b60405180910390fd5b80600160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600080826040516020016102d99190610b05565b6040516020818303038152906040528051906020012090506102fe8460025483610618565b61033d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161033490610b6c565b60405180910390fd5b600191505092915050565b8160003360405160200161035c9190610b05565b6040516020818303038152906040528051906020012090506103818260025483610618565b6103c0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103b790610b6c565b60405180910390fd5b60001515600360003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff16151514610453576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161044a90610bd8565b60405180910390fd5b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690506001600360003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff0219169083151502179055508073ffffffffffffffffffffffffffffffffffffffff1663a22a420d85336040518363ffffffff1660e01b815260040161050c929190610c16565b600060405180830381600087803b15801561052657600080fd5b505af115801561053a573d6000803e3d6000fd5b505050505050505050565b3373ffffffffffffffffffffffffffffffffffffffff16600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146105d5576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016105cc90610a9d565b60405180910390fd5b806000806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600082610625858461062f565b1490509392505050565b60008082905060005b8451811015610674576106658286838151811061065857610657610c3f565b5b602002602001015161067f565b91508080600101915050610638565b508091505092915050565b60008183106106975761069282846106aa565b6106a2565b6106a183836106aa565b5b905092915050565b600082600052816020526040600020905092915050565b6000604051905090565b600080fd5b600080fd5b6000819050919050565b6106e8816106d5565b81146106f357600080fd5b50565b600081359050610705816106df565b92915050565b600060208284031215610721576107206106cb565b5b600061072f848285016106f6565b91505092915050565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b600061076382610738565b9050919050565b61077381610758565b811461077e57600080fd5b50565b6000813590506107908161076a565b92915050565b6000602082840312156107ac576107ab6106cb565b5b60006107ba84828501610781565b91505092915050565b60008115159050919050565b6107d8816107c3565b82525050565b60006020820190506107f360008301846107cf565b92915050565b600080fd5b6000601f19601f8301169050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b610847826107fe565b810181811067ffffffffffffffff821117156108665761086561080f565b5b80604052505050565b60006108796106c1565b9050610885828261083e565b919050565b600067ffffffffffffffff8211156108a5576108a461080f565b5b602082029050602081019050919050565b600080fd5b60006108ce6108c98461088a565b61086f565b905080838252602082019050602084028301858111156108f1576108f06108b6565b5b835b8181101561091a578061090688826106f6565b8452602084019350506020810190506108f3565b5050509392505050565b600082601f830112610939576109386107f9565b5b81356109498482602086016108bb565b91505092915050565b60008060408385031215610969576109686106cb565b5b600083013567ffffffffffffffff811115610987576109866106d0565b5b61099385828601610924565b92505060206109a485828601610781565b9150509250929050565b6000819050919050565b6109c1816109ae565b81146109cc57600080fd5b50565b6000813590506109de816109b8565b92915050565b600080604083850312156109fb576109fa6106cb565b5b600083013567ffffffffffffffff811115610a1957610a186106d0565b5b610a2585828601610924565b9250506020610a36858286016109cf565b9150509250929050565b600082825260208201905092915050565b7f6f6e6c79206f776e65722066756e6374696f6e00000000000000000000000000600082015250565b6000610a87601383610a40565b9150610a9282610a51565b602082019050919050565b60006020820190508181036000830152610ab681610a7a565b9050919050565b60008160601b9050919050565b6000610ad582610abd565b9050919050565b6000610ae782610aca565b9050919050565b610aff610afa82610758565b610adc565b82525050565b6000610b118284610aee565b60148201915081905092915050565b7f496e76616c69642050726f6f6600000000000000000000000000000000000000600082015250565b6000610b56600d83610a40565b9150610b6182610b20565b602082019050919050565b60006020820190508181036000830152610b8581610b49565b9050919050565b7f616464726573732068617320616c7265616479206d696e746564000000000000600082015250565b6000610bc2601a83610a40565b9150610bcd82610b8c565b602082019050919050565b60006020820190508181036000830152610bf181610bb5565b9050919050565b610c01816109ae565b82525050565b610c1081610758565b82525050565b6000604082019050610c2b6000830185610bf8565b610c386020830184610c07565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea26469706673582212206eab33851fb98390aa4b664b3d34096d7b2c799a0a2e6b9c67cd1e0811472b0964736f6c63430008180033000000000000000000000000e31e2dc04779488404f11baf7c29ab5e8df885c934694eb335d982503307d54a5c46642486d95aa413d8cc03a9976baa96860036

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100625760003560e01c806321ff99701461006757806338e21cce146100835780634fb2e45d146100b35780635eb4ff10146100cf578063889af3f9146100ff578063e5eb7ae81461011b575b600080fd5b610081600480360381019061007c919061070b565b610137565b005b61009d60048036038101906100989190610796565b6101d1565b6040516100aa91906107de565b60405180910390f35b6100cd60048036038101906100c89190610796565b6101f1565b005b6100e960048036038101906100e49190610952565b6102c5565b6040516100f691906107de565b60405180910390f35b610119600480360381019061011491906109e4565b610348565b005b61013560048036038101906101309190610796565b610545565b005b3373ffffffffffffffffffffffffffffffffffffffff16600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146101c7576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016101be90610a9d565b60405180910390fd5b8060028190555050565b60036020528060005260406000206000915054906101000a900460ff1681565b3373ffffffffffffffffffffffffffffffffffffffff16600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610281576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161027890610a9d565b60405180910390fd5b80600160006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600080826040516020016102d99190610b05565b6040516020818303038152906040528051906020012090506102fe8460025483610618565b61033d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161033490610b6c565b60405180910390fd5b600191505092915050565b8160003360405160200161035c9190610b05565b6040516020818303038152906040528051906020012090506103818260025483610618565b6103c0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103b790610b6c565b60405180910390fd5b60001515600360003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff16151514610453576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161044a90610bd8565b60405180910390fd5b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690506001600360003373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff0219169083151502179055508073ffffffffffffffffffffffffffffffffffffffff1663a22a420d85336040518363ffffffff1660e01b815260040161050c929190610c16565b600060405180830381600087803b15801561052657600080fd5b505af115801561053a573d6000803e3d6000fd5b505050505050505050565b3373ffffffffffffffffffffffffffffffffffffffff16600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146105d5576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016105cc90610a9d565b60405180910390fd5b806000806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600082610625858461062f565b1490509392505050565b60008082905060005b8451811015610674576106658286838151811061065857610657610c3f565b5b602002602001015161067f565b91508080600101915050610638565b508091505092915050565b60008183106106975761069282846106aa565b6106a2565b6106a183836106aa565b5b905092915050565b600082600052816020526040600020905092915050565b6000604051905090565b600080fd5b600080fd5b6000819050919050565b6106e8816106d5565b81146106f357600080fd5b50565b600081359050610705816106df565b92915050565b600060208284031215610721576107206106cb565b5b600061072f848285016106f6565b91505092915050565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b600061076382610738565b9050919050565b61077381610758565b811461077e57600080fd5b50565b6000813590506107908161076a565b92915050565b6000602082840312156107ac576107ab6106cb565b5b60006107ba84828501610781565b91505092915050565b60008115159050919050565b6107d8816107c3565b82525050565b60006020820190506107f360008301846107cf565b92915050565b600080fd5b6000601f19601f8301169050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b610847826107fe565b810181811067ffffffffffffffff821117156108665761086561080f565b5b80604052505050565b60006108796106c1565b9050610885828261083e565b919050565b600067ffffffffffffffff8211156108a5576108a461080f565b5b602082029050602081019050919050565b600080fd5b60006108ce6108c98461088a565b61086f565b905080838252602082019050602084028301858111156108f1576108f06108b6565b5b835b8181101561091a578061090688826106f6565b8452602084019350506020810190506108f3565b5050509392505050565b600082601f830112610939576109386107f9565b5b81356109498482602086016108bb565b91505092915050565b60008060408385031215610969576109686106cb565b5b600083013567ffffffffffffffff811115610987576109866106d0565b5b61099385828601610924565b92505060206109a485828601610781565b9150509250929050565b6000819050919050565b6109c1816109ae565b81146109cc57600080fd5b50565b6000813590506109de816109b8565b92915050565b600080604083850312156109fb576109fa6106cb565b5b600083013567ffffffffffffffff811115610a1957610a186106d0565b5b610a2585828601610924565b9250506020610a36858286016109cf565b9150509250929050565b600082825260208201905092915050565b7f6f6e6c79206f776e65722066756e6374696f6e00000000000000000000000000600082015250565b6000610a87601383610a40565b9150610a9282610a51565b602082019050919050565b60006020820190508181036000830152610ab681610a7a565b9050919050565b60008160601b9050919050565b6000610ad582610abd565b9050919050565b6000610ae782610aca565b9050919050565b610aff610afa82610758565b610adc565b82525050565b6000610b118284610aee565b60148201915081905092915050565b7f496e76616c69642050726f6f6600000000000000000000000000000000000000600082015250565b6000610b56600d83610a40565b9150610b6182610b20565b602082019050919050565b60006020820190508181036000830152610b8581610b49565b9050919050565b7f616464726573732068617320616c7265616479206d696e746564000000000000600082015250565b6000610bc2601a83610a40565b9150610bcd82610b8c565b602082019050919050565b60006020820190508181036000830152610bf181610bb5565b9050919050565b610c01816109ae565b82525050565b610c1081610758565b82525050565b6000604082019050610c2b6000830185610bf8565b610c386020830184610c07565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea26469706673582212206eab33851fb98390aa4b664b3d34096d7b2c799a0a2e6b9c67cd1e0811472b0964736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000e31e2dc04779488404f11baf7c29ab5e8df885c934694eb335d982503307d54a5c46642486d95aa413d8cc03a9976baa96860036

-----Decoded View---------------
Arg [0] : _sonicNft (address): 0xe31E2dC04779488404F11bAf7c29ab5E8dF885C9
Arg [1] : _merkleRoot (bytes32): 0x34694eb335d982503307d54a5c46642486d95aa413d8cc03a9976baa96860036

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000e31e2dc04779488404f11baf7c29ab5e8df885c9
Arg [1] : 34694eb335d982503307d54a5c46642486d95aa413d8cc03a9976baa96860036


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.