Contract Name:
DefaultReserveInterestRateStrategyV2
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IERC20} from '../dependencies/openzeppelin/contracts/IERC20.sol';
import {WadRayMath} from '../protocol/libraries/math/WadRayMath.sol';
import {PercentageMath} from '../protocol/libraries/math/PercentageMath.sol';
import {DataTypes} from '../protocol/libraries/types/DataTypes.sol';
import {Errors} from '../protocol/libraries/helpers/Errors.sol';
import {IDefaultInterestRateStrategyV2} from '../interfaces/IDefaultInterestRateStrategyV2.sol';
import {IReserveInterestRateStrategy} from '../interfaces/IReserveInterestRateStrategy.sol';
import {IPoolAddressesProvider} from '../interfaces/IPoolAddressesProvider.sol';
/**
* @title DefaultReserveInterestRateStrategyV2 contract
* @author BGD Labs
* @notice Default interest rate strategy used by the Aave protocol
* @dev Strategies are pool-specific: each contract CAN'T be used across different Aave pools
* due to the caching of the PoolAddressesProvider and the usage of underlying addresses as
* index of the _interestRateData
*/
contract DefaultReserveInterestRateStrategyV2 is IDefaultInterestRateStrategyV2 {
using WadRayMath for uint256;
using PercentageMath for uint256;
struct CalcInterestRatesLocalVars {
uint256 availableLiquidity;
uint256 currentVariableBorrowRate;
uint256 currentLiquidityRate;
uint256 borrowUsageRatio;
uint256 supplyUsageRatio;
uint256 availableLiquidityPlusDebt;
}
/// @inheritdoc IDefaultInterestRateStrategyV2
IPoolAddressesProvider public immutable ADDRESSES_PROVIDER;
/// @inheritdoc IDefaultInterestRateStrategyV2
uint256 public constant MAX_BORROW_RATE = 1000_00;
/// @inheritdoc IDefaultInterestRateStrategyV2
uint256 public constant MIN_OPTIMAL_POINT = 1_00;
/// @inheritdoc IDefaultInterestRateStrategyV2
uint256 public constant MAX_OPTIMAL_POINT = 99_00;
/// @dev Map of reserves address and their interest rate data (reserveAddress => interestRateData)
mapping(address => InterestRateData) internal _interestRateData;
modifier onlyPoolConfigurator() {
require(
msg.sender == ADDRESSES_PROVIDER.getPoolConfigurator(),
Errors.CALLER_NOT_POOL_CONFIGURATOR
);
_;
}
/**
* @dev Constructor.
* @param provider The address of the PoolAddressesProvider of the associated Aave pool
*/
constructor(address provider) {
require(provider != address(0), Errors.INVALID_ADDRESSES_PROVIDER);
ADDRESSES_PROVIDER = IPoolAddressesProvider(provider);
}
/// @inheritdoc IReserveInterestRateStrategy
function setInterestRateParams(
address reserve,
bytes calldata rateData
) external onlyPoolConfigurator {
_setInterestRateParams(reserve, abi.decode(rateData, (InterestRateData)));
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function setInterestRateParams(
address reserve,
InterestRateData calldata rateData
) external onlyPoolConfigurator {
_setInterestRateParams(reserve, rateData);
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function getInterestRateData(address reserve) external view returns (InterestRateDataRay memory) {
return _rayifyRateData(_interestRateData[reserve]);
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function getInterestRateDataBps(address reserve) external view returns (InterestRateData memory) {
return _interestRateData[reserve];
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function getOptimalUsageRatio(address reserve) external view returns (uint256) {
return _bpsToRay(uint256(_interestRateData[reserve].optimalUsageRatio));
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function getVariableRateSlope1(address reserve) external view returns (uint256) {
return _bpsToRay(uint256(_interestRateData[reserve].variableRateSlope1));
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function getVariableRateSlope2(address reserve) external view returns (uint256) {
return _bpsToRay(uint256(_interestRateData[reserve].variableRateSlope2));
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function getBaseVariableBorrowRate(address reserve) external view override returns (uint256) {
return _bpsToRay(uint256(_interestRateData[reserve].baseVariableBorrowRate));
}
/// @inheritdoc IDefaultInterestRateStrategyV2
function getMaxVariableBorrowRate(address reserve) external view override returns (uint256) {
return
_bpsToRay(
uint256(
_interestRateData[reserve].baseVariableBorrowRate +
_interestRateData[reserve].variableRateSlope1 +
_interestRateData[reserve].variableRateSlope2
)
);
}
/// @inheritdoc IReserveInterestRateStrategy
function calculateInterestRates(
DataTypes.CalculateInterestRatesParams memory params
) external view virtual override returns (uint256, uint256) {
InterestRateDataRay memory rateData = _rayifyRateData(_interestRateData[params.reserve]);
// @note This is a short circuit to allow mintable assets (ex. GHO), which by definition cannot be supplied
// and thus do not use virtual underlying balances.
if (!params.usingVirtualBalance) {
return (0, rateData.baseVariableBorrowRate);
}
CalcInterestRatesLocalVars memory vars;
vars.currentLiquidityRate = 0;
vars.currentVariableBorrowRate = rateData.baseVariableBorrowRate;
if (params.totalDebt != 0) {
vars.availableLiquidity =
params.virtualUnderlyingBalance +
params.liquidityAdded -
params.liquidityTaken;
vars.availableLiquidityPlusDebt = vars.availableLiquidity + params.totalDebt;
vars.borrowUsageRatio = params.totalDebt.rayDiv(vars.availableLiquidityPlusDebt);
vars.supplyUsageRatio = params.totalDebt.rayDiv(
vars.availableLiquidityPlusDebt + params.unbacked
);
} else {
return (0, vars.currentVariableBorrowRate);
}
if (vars.borrowUsageRatio > rateData.optimalUsageRatio) {
uint256 excessBorrowUsageRatio = (vars.borrowUsageRatio - rateData.optimalUsageRatio).rayDiv(
WadRayMath.RAY - rateData.optimalUsageRatio
);
vars.currentVariableBorrowRate +=
rateData.variableRateSlope1 +
rateData.variableRateSlope2.rayMul(excessBorrowUsageRatio);
} else {
vars.currentVariableBorrowRate += rateData
.variableRateSlope1
.rayMul(vars.borrowUsageRatio)
.rayDiv(rateData.optimalUsageRatio);
}
vars.currentLiquidityRate = vars
.currentVariableBorrowRate
.rayMul(vars.supplyUsageRatio)
.percentMul(PercentageMath.PERCENTAGE_FACTOR - params.reserveFactor);
return (vars.currentLiquidityRate, vars.currentVariableBorrowRate);
}
/**
* @dev Doing validations and data update for an asset
* @param reserve address of the underlying asset of the reserve
* @param rateData Encoded reserve interest rate data to apply
*/
function _setInterestRateParams(address reserve, InterestRateData memory rateData) internal {
require(reserve != address(0), Errors.ZERO_ADDRESS_NOT_VALID);
require(
rateData.optimalUsageRatio <= MAX_OPTIMAL_POINT &&
rateData.optimalUsageRatio >= MIN_OPTIMAL_POINT,
Errors.INVALID_OPTIMAL_USAGE_RATIO
);
require(
rateData.variableRateSlope1 <= rateData.variableRateSlope2,
Errors.SLOPE_2_MUST_BE_GTE_SLOPE_1
);
// The maximum rate should not be above certain threshold
require(
uint256(rateData.baseVariableBorrowRate) +
uint256(rateData.variableRateSlope1) +
uint256(rateData.variableRateSlope2) <=
MAX_BORROW_RATE,
Errors.INVALID_MAX_RATE
);
_interestRateData[reserve] = rateData;
emit RateDataUpdate(
reserve,
rateData.optimalUsageRatio,
rateData.baseVariableBorrowRate,
rateData.variableRateSlope1,
rateData.variableRateSlope2
);
}
/**
* @dev Transforms an InterestRateData struct to an InterestRateDataRay struct by multiplying all values
* by 1e23, turning them into ray values
*
* @param data The InterestRateData struct to transform
*
* @return The resulting InterestRateDataRay struct
*/
function _rayifyRateData(
InterestRateData memory data
) internal pure returns (InterestRateDataRay memory) {
return
InterestRateDataRay({
optimalUsageRatio: _bpsToRay(uint256(data.optimalUsageRatio)),
baseVariableBorrowRate: _bpsToRay(uint256(data.baseVariableBorrowRate)),
variableRateSlope1: _bpsToRay(uint256(data.variableRateSlope1)),
variableRateSlope2: _bpsToRay(uint256(data.variableRateSlope2))
});
}
// @dev helper function added here, as generally the protocol doesn't use bps
function _bpsToRay(uint256 n) internal pure returns (uint256) {
return n * 1e23;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
/**
* @title WadRayMath library
* @author Aave
* @notice Provides functions to perform calculations with Wad and Ray units
* @dev Provides mul and div function for wads (decimal numbers with 18 digits of precision) and rays (decimal numbers
* with 27 digits of precision)
* @dev Operations are rounded. If a value is >=.5, will be rounded up, otherwise rounded down.
*/
library WadRayMath {
// HALF_WAD and HALF_RAY expressed with extended notation as constant with operations are not supported in Yul assembly
uint256 internal constant WAD = 1e18;
uint256 internal constant HALF_WAD = 0.5e18;
uint256 internal constant RAY = 1e27;
uint256 internal constant HALF_RAY = 0.5e27;
uint256 internal constant WAD_RAY_RATIO = 1e9;
/**
* @dev Multiplies two wad, rounding half up to the nearest wad
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Wad
* @param b Wad
* @return c = a*b, in wad
*/
function wadMul(uint256 a, uint256 b) internal pure returns (uint256 c) {
// to avoid overflow, a <= (type(uint256).max - HALF_WAD) / b
assembly {
if iszero(or(iszero(b), iszero(gt(a, div(sub(not(0), HALF_WAD), b))))) {
revert(0, 0)
}
c := div(add(mul(a, b), HALF_WAD), WAD)
}
}
/**
* @dev Divides two wad, rounding half up to the nearest wad
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Wad
* @param b Wad
* @return c = a/b, in wad
*/
function wadDiv(uint256 a, uint256 b) internal pure returns (uint256 c) {
// to avoid overflow, a <= (type(uint256).max - halfB) / WAD
assembly {
if or(iszero(b), iszero(iszero(gt(a, div(sub(not(0), div(b, 2)), WAD))))) {
revert(0, 0)
}
c := div(add(mul(a, WAD), div(b, 2)), b)
}
}
/**
* @notice Multiplies two ray, rounding half up to the nearest ray
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Ray
* @param b Ray
* @return c = a raymul b
*/
function rayMul(uint256 a, uint256 b) internal pure returns (uint256 c) {
// to avoid overflow, a <= (type(uint256).max - HALF_RAY) / b
assembly {
if iszero(or(iszero(b), iszero(gt(a, div(sub(not(0), HALF_RAY), b))))) {
revert(0, 0)
}
c := div(add(mul(a, b), HALF_RAY), RAY)
}
}
/**
* @notice Divides two ray, rounding half up to the nearest ray
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Ray
* @param b Ray
* @return c = a raydiv b
*/
function rayDiv(uint256 a, uint256 b) internal pure returns (uint256 c) {
// to avoid overflow, a <= (type(uint256).max - halfB) / RAY
assembly {
if or(iszero(b), iszero(iszero(gt(a, div(sub(not(0), div(b, 2)), RAY))))) {
revert(0, 0)
}
c := div(add(mul(a, RAY), div(b, 2)), b)
}
}
/**
* @dev Casts ray down to wad
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Ray
* @return b = a converted to wad, rounded half up to the nearest wad
*/
function rayToWad(uint256 a) internal pure returns (uint256 b) {
assembly {
b := div(a, WAD_RAY_RATIO)
let remainder := mod(a, WAD_RAY_RATIO)
if iszero(lt(remainder, div(WAD_RAY_RATIO, 2))) {
b := add(b, 1)
}
}
}
/**
* @dev Converts wad up to ray
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Wad
* @return b = a converted in ray
*/
function wadToRay(uint256 a) internal pure returns (uint256 b) {
// to avoid overflow, b/WAD_RAY_RATIO == a
assembly {
b := mul(a, WAD_RAY_RATIO)
if iszero(eq(div(b, WAD_RAY_RATIO), a)) {
revert(0, 0)
}
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
/**
* @title PercentageMath library
* @author Aave
* @notice Provides functions to perform percentage calculations
* @dev Percentages are defined by default with 2 decimals of precision (100.00). The precision is indicated by PERCENTAGE_FACTOR
* @dev Operations are rounded. If a value is >=.5, will be rounded up, otherwise rounded down.
*/
library PercentageMath {
// Maximum percentage factor (100.00%)
uint256 internal constant PERCENTAGE_FACTOR = 1e4;
// Half percentage factor (50.00%)
uint256 internal constant HALF_PERCENTAGE_FACTOR = 0.5e4;
/**
* @notice Executes a percentage multiplication
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return result value percentmul percentage
*/
function percentMul(uint256 value, uint256 percentage) internal pure returns (uint256 result) {
// to avoid overflow, value <= (type(uint256).max - HALF_PERCENTAGE_FACTOR) / percentage
assembly {
if iszero(
or(
iszero(percentage),
iszero(gt(value, div(sub(not(0), HALF_PERCENTAGE_FACTOR), percentage)))
)
) {
revert(0, 0)
}
result := div(add(mul(value, percentage), HALF_PERCENTAGE_FACTOR), PERCENTAGE_FACTOR)
}
}
/**
* @notice Executes a percentage division
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return result value percentdiv percentage
*/
function percentDiv(uint256 value, uint256 percentage) internal pure returns (uint256 result) {
// to avoid overflow, value <= (type(uint256).max - halfPercentage) / PERCENTAGE_FACTOR
assembly {
if or(
iszero(percentage),
iszero(iszero(gt(value, div(sub(not(0), div(percentage, 2)), PERCENTAGE_FACTOR))))
) {
revert(0, 0)
}
result := div(add(mul(value, PERCENTAGE_FACTOR), div(percentage, 2)), percentage)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library DataTypes {
/**
* This exists specifically to maintain the `getReserveData()` interface, since the new, internal
* `ReserveData` struct includes the reserve's `virtualUnderlyingBalance`.
*/
struct ReserveDataLegacy {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
// DEPRECATED on v3.2.0
uint128 currentStableBorrowRate;
//timestamp of last update
uint40 lastUpdateTimestamp;
//the id of the reserve. Represents the position in the list of the active reserves
uint16 id;
//aToken address
address aTokenAddress;
// DEPRECATED on v3.2.0
address stableDebtTokenAddress;
//variableDebtToken address
address variableDebtTokenAddress;
//address of the interest rate strategy
address interestRateStrategyAddress;
//the current treasury balance, scaled
uint128 accruedToTreasury;
//the outstanding unbacked aTokens minted through the bridging feature
uint128 unbacked;
//the outstanding debt borrowed against this asset in isolation mode
uint128 isolationModeTotalDebt;
}
struct ReserveData {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
// DEPRECATED on v3.2.0
uint128 __deprecatedStableBorrowRate;
//timestamp of last update
uint40 lastUpdateTimestamp;
//the id of the reserve. Represents the position in the list of the active reserves
uint16 id;
//timestamp until when liquidations are not allowed on the reserve, if set to past liquidations will be allowed
uint40 liquidationGracePeriodUntil;
//aToken address
address aTokenAddress;
// DEPRECATED on v3.2.0
address __deprecatedStableDebtTokenAddress;
//variableDebtToken address
address variableDebtTokenAddress;
//address of the interest rate strategy
address interestRateStrategyAddress;
//the current treasury balance, scaled
uint128 accruedToTreasury;
//the outstanding unbacked aTokens minted through the bridging feature
uint128 unbacked;
//the outstanding debt borrowed against this asset in isolation mode
uint128 isolationModeTotalDebt;
//the amount of underlying accounted for by the protocol
uint128 virtualUnderlyingBalance;
}
struct ReserveConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 48-55: Decimals
//bit 56: reserve is active
//bit 57: reserve is frozen
//bit 58: borrowing is enabled
//bit 59: DEPRECATED: stable rate borrowing enabled
//bit 60: asset is paused
//bit 61: borrowing in isolation mode is enabled
//bit 62: siloed borrowing enabled
//bit 63: flashloaning enabled
//bit 64-79: reserve factor
//bit 80-115: borrow cap in whole tokens, borrowCap == 0 => no cap
//bit 116-151: supply cap in whole tokens, supplyCap == 0 => no cap
//bit 152-167: liquidation protocol fee
//bit 168-175: DEPRECATED: eMode category
//bit 176-211: unbacked mint cap in whole tokens, unbackedMintCap == 0 => minting disabled
//bit 212-251: debt ceiling for isolation mode with (ReserveConfiguration::DEBT_CEILING_DECIMALS) decimals
//bit 252: virtual accounting is enabled for the reserve
//bit 253-255 unused
uint256 data;
}
struct UserConfigurationMap {
/**
* @dev Bitmap of the users collaterals and borrows. It is divided in pairs of bits, one pair per asset.
* The first bit indicates if an asset is used as collateral by the user, the second whether an
* asset is borrowed by the user.
*/
uint256 data;
}
// DEPRECATED: kept for backwards compatibility, might be removed in a future version
struct EModeCategoryLegacy {
// each eMode category has a custom ltv and liquidation threshold
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
// DEPRECATED
address priceSource;
string label;
}
struct CollateralConfig {
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
}
struct EModeCategoryBaseConfiguration {
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
string label;
}
struct EModeCategory {
// each eMode category has a custom ltv and liquidation threshold
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
uint128 collateralBitmap;
string label;
uint128 borrowableBitmap;
}
enum InterestRateMode {
NONE,
__DEPRECATED,
VARIABLE
}
struct ReserveCache {
uint256 currScaledVariableDebt;
uint256 nextScaledVariableDebt;
uint256 currLiquidityIndex;
uint256 nextLiquidityIndex;
uint256 currVariableBorrowIndex;
uint256 nextVariableBorrowIndex;
uint256 currLiquidityRate;
uint256 currVariableBorrowRate;
uint256 reserveFactor;
ReserveConfigurationMap reserveConfiguration;
address aTokenAddress;
address variableDebtTokenAddress;
uint40 reserveLastUpdateTimestamp;
}
struct ExecuteLiquidationCallParams {
uint256 reservesCount;
uint256 debtToCover;
address collateralAsset;
address debtAsset;
address user;
bool receiveAToken;
address priceOracle;
uint8 userEModeCategory;
address priceOracleSentinel;
}
struct ExecuteSupplyParams {
address asset;
uint256 amount;
address onBehalfOf;
uint16 referralCode;
}
struct ExecuteBorrowParams {
address asset;
address user;
address onBehalfOf;
uint256 amount;
InterestRateMode interestRateMode;
uint16 referralCode;
bool releaseUnderlying;
uint256 reservesCount;
address oracle;
uint8 userEModeCategory;
address priceOracleSentinel;
}
struct ExecuteRepayParams {
address asset;
uint256 amount;
InterestRateMode interestRateMode;
address onBehalfOf;
bool useATokens;
}
struct ExecuteWithdrawParams {
address asset;
uint256 amount;
address to;
uint256 reservesCount;
address oracle;
uint8 userEModeCategory;
}
struct ExecuteSetUserEModeParams {
uint256 reservesCount;
address oracle;
uint8 categoryId;
}
struct FinalizeTransferParams {
address asset;
address from;
address to;
uint256 amount;
uint256 balanceFromBefore;
uint256 balanceToBefore;
uint256 reservesCount;
address oracle;
uint8 fromEModeCategory;
}
struct FlashloanParams {
address receiverAddress;
address[] assets;
uint256[] amounts;
uint256[] interestRateModes;
address onBehalfOf;
bytes params;
uint16 referralCode;
uint256 flashLoanPremiumToProtocol;
uint256 flashLoanPremiumTotal;
uint256 reservesCount;
address addressesProvider;
address pool;
uint8 userEModeCategory;
bool isAuthorizedFlashBorrower;
}
struct FlashloanSimpleParams {
address receiverAddress;
address asset;
uint256 amount;
bytes params;
uint16 referralCode;
uint256 flashLoanPremiumToProtocol;
uint256 flashLoanPremiumTotal;
}
struct FlashLoanRepaymentParams {
uint256 amount;
uint256 totalPremium;
uint256 flashLoanPremiumToProtocol;
address asset;
address receiverAddress;
uint16 referralCode;
}
struct CalculateUserAccountDataParams {
UserConfigurationMap userConfig;
uint256 reservesCount;
address user;
address oracle;
uint8 userEModeCategory;
}
struct ValidateBorrowParams {
ReserveCache reserveCache;
UserConfigurationMap userConfig;
address asset;
address userAddress;
uint256 amount;
InterestRateMode interestRateMode;
uint256 reservesCount;
address oracle;
uint8 userEModeCategory;
address priceOracleSentinel;
bool isolationModeActive;
address isolationModeCollateralAddress;
uint256 isolationModeDebtCeiling;
}
struct ValidateLiquidationCallParams {
ReserveCache debtReserveCache;
uint256 totalDebt;
uint256 healthFactor;
address priceOracleSentinel;
}
struct CalculateInterestRatesParams {
uint256 unbacked;
uint256 liquidityAdded;
uint256 liquidityTaken;
uint256 totalDebt;
uint256 reserveFactor;
address reserve;
bool usingVirtualBalance;
uint256 virtualUnderlyingBalance;
}
struct InitReserveParams {
address asset;
address aTokenAddress;
address variableDebtAddress;
address interestRateStrategyAddress;
uint16 reservesCount;
uint16 maxNumberReserves;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title Errors library
* @author Aave
* @notice Defines the error messages emitted by the different contracts of the Aave protocol
*/
library Errors {
string public constant CALLER_NOT_POOL_ADMIN = '1'; // 'The caller of the function is not a pool admin'
string public constant CALLER_NOT_EMERGENCY_ADMIN = '2'; // 'The caller of the function is not an emergency admin'
string public constant CALLER_NOT_POOL_OR_EMERGENCY_ADMIN = '3'; // 'The caller of the function is not a pool or emergency admin'
string public constant CALLER_NOT_RISK_OR_POOL_ADMIN = '4'; // 'The caller of the function is not a risk or pool admin'
string public constant CALLER_NOT_ASSET_LISTING_OR_POOL_ADMIN = '5'; // 'The caller of the function is not an asset listing or pool admin'
string public constant CALLER_NOT_BRIDGE = '6'; // 'The caller of the function is not a bridge'
string public constant ADDRESSES_PROVIDER_NOT_REGISTERED = '7'; // 'Pool addresses provider is not registered'
string public constant INVALID_ADDRESSES_PROVIDER_ID = '8'; // 'Invalid id for the pool addresses provider'
string public constant NOT_CONTRACT = '9'; // 'Address is not a contract'
string public constant CALLER_NOT_POOL_CONFIGURATOR = '10'; // 'The caller of the function is not the pool configurator'
string public constant CALLER_NOT_ATOKEN = '11'; // 'The caller of the function is not an AToken'
string public constant INVALID_ADDRESSES_PROVIDER = '12'; // 'The address of the pool addresses provider is invalid'
string public constant INVALID_FLASHLOAN_EXECUTOR_RETURN = '13'; // 'Invalid return value of the flashloan executor function'
string public constant RESERVE_ALREADY_ADDED = '14'; // 'Reserve has already been added to reserve list'
string public constant NO_MORE_RESERVES_ALLOWED = '15'; // 'Maximum amount of reserves in the pool reached'
string public constant EMODE_CATEGORY_RESERVED = '16'; // 'Zero eMode category is reserved for volatile heterogeneous assets'
string public constant INVALID_EMODE_CATEGORY_ASSIGNMENT = '17'; // 'Invalid eMode category assignment to asset'
string public constant RESERVE_LIQUIDITY_NOT_ZERO = '18'; // 'The liquidity of the reserve needs to be 0'
string public constant FLASHLOAN_PREMIUM_INVALID = '19'; // 'Invalid flashloan premium'
string public constant INVALID_RESERVE_PARAMS = '20'; // 'Invalid risk parameters for the reserve'
string public constant INVALID_EMODE_CATEGORY_PARAMS = '21'; // 'Invalid risk parameters for the eMode category'
string public constant BRIDGE_PROTOCOL_FEE_INVALID = '22'; // 'Invalid bridge protocol fee'
string public constant CALLER_MUST_BE_POOL = '23'; // 'The caller of this function must be a pool'
string public constant INVALID_MINT_AMOUNT = '24'; // 'Invalid amount to mint'
string public constant INVALID_BURN_AMOUNT = '25'; // 'Invalid amount to burn'
string public constant INVALID_AMOUNT = '26'; // 'Amount must be greater than 0'
string public constant RESERVE_INACTIVE = '27'; // 'Action requires an active reserve'
string public constant RESERVE_FROZEN = '28'; // 'Action cannot be performed because the reserve is frozen'
string public constant RESERVE_PAUSED = '29'; // 'Action cannot be performed because the reserve is paused'
string public constant BORROWING_NOT_ENABLED = '30'; // 'Borrowing is not enabled'
string public constant NOT_ENOUGH_AVAILABLE_USER_BALANCE = '32'; // 'User cannot withdraw more than the available balance'
string public constant INVALID_INTEREST_RATE_MODE_SELECTED = '33'; // 'Invalid interest rate mode selected'
string public constant COLLATERAL_BALANCE_IS_ZERO = '34'; // 'The collateral balance is 0'
string public constant HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD = '35'; // 'Health factor is lesser than the liquidation threshold'
string public constant COLLATERAL_CANNOT_COVER_NEW_BORROW = '36'; // 'There is not enough collateral to cover a new borrow'
string public constant COLLATERAL_SAME_AS_BORROWING_CURRENCY = '37'; // 'Collateral is (mostly) the same currency that is being borrowed'
string public constant NO_DEBT_OF_SELECTED_TYPE = '39'; // 'For repayment of a specific type of debt, the user needs to have debt that type'
string public constant NO_EXPLICIT_AMOUNT_TO_REPAY_ON_BEHALF = '40'; // 'To repay on behalf of a user an explicit amount to repay is needed'
string public constant NO_OUTSTANDING_VARIABLE_DEBT = '42'; // 'User does not have outstanding variable rate debt on this reserve'
string public constant UNDERLYING_BALANCE_ZERO = '43'; // 'The underlying balance needs to be greater than 0'
string public constant INTEREST_RATE_REBALANCE_CONDITIONS_NOT_MET = '44'; // 'Interest rate rebalance conditions were not met'
string public constant HEALTH_FACTOR_NOT_BELOW_THRESHOLD = '45'; // 'Health factor is not below the threshold'
string public constant COLLATERAL_CANNOT_BE_LIQUIDATED = '46'; // 'The collateral chosen cannot be liquidated'
string public constant SPECIFIED_CURRENCY_NOT_BORROWED_BY_USER = '47'; // 'User did not borrow the specified currency'
string public constant INCONSISTENT_FLASHLOAN_PARAMS = '49'; // 'Inconsistent flashloan parameters'
string public constant BORROW_CAP_EXCEEDED = '50'; // 'Borrow cap is exceeded'
string public constant SUPPLY_CAP_EXCEEDED = '51'; // 'Supply cap is exceeded'
string public constant UNBACKED_MINT_CAP_EXCEEDED = '52'; // 'Unbacked mint cap is exceeded'
string public constant DEBT_CEILING_EXCEEDED = '53'; // 'Debt ceiling is exceeded'
string public constant UNDERLYING_CLAIMABLE_RIGHTS_NOT_ZERO = '54'; // 'Claimable rights over underlying not zero (aToken supply or accruedToTreasury)'
string public constant VARIABLE_DEBT_SUPPLY_NOT_ZERO = '56'; // 'Variable debt supply is not zero'
string public constant LTV_VALIDATION_FAILED = '57'; // 'Ltv validation failed'
string public constant INCONSISTENT_EMODE_CATEGORY = '58'; // 'Inconsistent eMode category'
string public constant PRICE_ORACLE_SENTINEL_CHECK_FAILED = '59'; // 'Price oracle sentinel validation failed'
string public constant ASSET_NOT_BORROWABLE_IN_ISOLATION = '60'; // 'Asset is not borrowable in isolation mode'
string public constant RESERVE_ALREADY_INITIALIZED = '61'; // 'Reserve has already been initialized'
string public constant USER_IN_ISOLATION_MODE_OR_LTV_ZERO = '62'; // 'User is in isolation mode or ltv is zero'
string public constant INVALID_LTV = '63'; // 'Invalid ltv parameter for the reserve'
string public constant INVALID_LIQ_THRESHOLD = '64'; // 'Invalid liquidity threshold parameter for the reserve'
string public constant INVALID_LIQ_BONUS = '65'; // 'Invalid liquidity bonus parameter for the reserve'
string public constant INVALID_DECIMALS = '66'; // 'Invalid decimals parameter of the underlying asset of the reserve'
string public constant INVALID_RESERVE_FACTOR = '67'; // 'Invalid reserve factor parameter for the reserve'
string public constant INVALID_BORROW_CAP = '68'; // 'Invalid borrow cap for the reserve'
string public constant INVALID_SUPPLY_CAP = '69'; // 'Invalid supply cap for the reserve'
string public constant INVALID_LIQUIDATION_PROTOCOL_FEE = '70'; // 'Invalid liquidation protocol fee for the reserve'
string public constant INVALID_EMODE_CATEGORY = '71'; // 'Invalid eMode category for the reserve'
string public constant INVALID_UNBACKED_MINT_CAP = '72'; // 'Invalid unbacked mint cap for the reserve'
string public constant INVALID_DEBT_CEILING = '73'; // 'Invalid debt ceiling for the reserve
string public constant INVALID_RESERVE_INDEX = '74'; // 'Invalid reserve index'
string public constant ACL_ADMIN_CANNOT_BE_ZERO = '75'; // 'ACL admin cannot be set to the zero address'
string public constant INCONSISTENT_PARAMS_LENGTH = '76'; // 'Array parameters that should be equal length are not'
string public constant ZERO_ADDRESS_NOT_VALID = '77'; // 'Zero address not valid'
string public constant INVALID_EXPIRATION = '78'; // 'Invalid expiration'
string public constant INVALID_SIGNATURE = '79'; // 'Invalid signature'
string public constant OPERATION_NOT_SUPPORTED = '80'; // 'Operation not supported'
string public constant DEBT_CEILING_NOT_ZERO = '81'; // 'Debt ceiling is not zero'
string public constant ASSET_NOT_LISTED = '82'; // 'Asset is not listed'
string public constant INVALID_OPTIMAL_USAGE_RATIO = '83'; // 'Invalid optimal usage ratio'
string public constant UNDERLYING_CANNOT_BE_RESCUED = '85'; // 'The underlying asset cannot be rescued'
string public constant ADDRESSES_PROVIDER_ALREADY_ADDED = '86'; // 'Reserve has already been added to reserve list'
string public constant POOL_ADDRESSES_DO_NOT_MATCH = '87'; // 'The token implementation pool address and the pool address provided by the initializing pool do not match'
string public constant SILOED_BORROWING_VIOLATION = '89'; // 'User is trying to borrow multiple assets including a siloed one'
string public constant RESERVE_DEBT_NOT_ZERO = '90'; // the total debt of the reserve needs to be 0
string public constant FLASHLOAN_DISABLED = '91'; // FlashLoaning for this asset is disabled
string public constant INVALID_MAX_RATE = '92'; // The expect maximum borrow rate is invalid
string public constant WITHDRAW_TO_ATOKEN = '93'; // Withdrawing to the aToken is not allowed
string public constant SUPPLY_TO_ATOKEN = '94'; // Supplying to the aToken is not allowed
string public constant SLOPE_2_MUST_BE_GTE_SLOPE_1 = '95'; // Variable interest rate slope 2 can not be lower than slope 1
string public constant CALLER_NOT_RISK_OR_POOL_OR_EMERGENCY_ADMIN = '96'; // 'The caller of the function is not a risk, pool or emergency admin'
string public constant LIQUIDATION_GRACE_SENTINEL_CHECK_FAILED = '97'; // 'Liquidation grace sentinel validation failed'
string public constant INVALID_GRACE_PERIOD = '98'; // Grace period above a valid range
string public constant INVALID_FREEZE_STATE = '99'; // Reserve is already in the passed freeze state
string public constant NOT_BORROWABLE_IN_EMODE = '100'; // Asset not borrowable in eMode
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IReserveInterestRateStrategy} from './IReserveInterestRateStrategy.sol';
import {IPoolAddressesProvider} from './IPoolAddressesProvider.sol';
/**
* @title IDefaultInterestRateStrategyV2
* @author BGD Labs
* @notice Interface of the default interest rate strategy used by the Aave protocol
*/
interface IDefaultInterestRateStrategyV2 is IReserveInterestRateStrategy {
/**
* @notice Holds the interest rate data for a given reserve
*
* @dev Since values are in bps, they are multiplied by 1e23 in order to become rays with 27 decimals. This
* in turn means that the maximum supported interest rate is 4294967295 (2**32-1) bps or 42949672.95%.
*
* @param optimalUsageRatio The optimal usage ratio, in bps
* @param baseVariableBorrowRate The base variable borrow rate, in bps
* @param variableRateSlope1 The slope of the variable interest curve, before hitting the optimal ratio, in bps
* @param variableRateSlope2 The slope of the variable interest curve, after hitting the optimal ratio, in bps
*/
struct InterestRateData {
uint16 optimalUsageRatio;
uint32 baseVariableBorrowRate;
uint32 variableRateSlope1;
uint32 variableRateSlope2;
}
/**
* @notice The interest rate data, where all values are in ray (fixed-point 27 decimal numbers) for a given reserve,
* used in in-memory calculations.
*
* @param optimalUsageRatio The optimal usage ratio
* @param baseVariableBorrowRate The base variable borrow rate
* @param variableRateSlope1 The slope of the variable interest curve, before hitting the optimal ratio
* @param variableRateSlope2 The slope of the variable interest curve, after hitting the optimal ratio
*/
struct InterestRateDataRay {
uint256 optimalUsageRatio;
uint256 baseVariableBorrowRate;
uint256 variableRateSlope1;
uint256 variableRateSlope2;
}
/**
* @notice emitted when new interest rate data is set in a reserve
*
* @param reserve address of the reserve that has new interest rate data set
* @param optimalUsageRatio The optimal usage ratio, in bps
* @param baseVariableBorrowRate The base variable borrow rate, in bps
* @param variableRateSlope1 The slope of the variable interest curve, before hitting the optimal ratio, in bps
* @param variableRateSlope2 The slope of the variable interest curve, after hitting the optimal ratio, in bps
*/
event RateDataUpdate(
address indexed reserve,
uint256 optimalUsageRatio,
uint256 baseVariableBorrowRate,
uint256 variableRateSlope1,
uint256 variableRateSlope2
);
/**
* @notice Returns the address of the PoolAddressesProvider
* @return The address of the PoolAddressesProvider contract
*/
function ADDRESSES_PROVIDER() external view returns (IPoolAddressesProvider);
/**
* @notice Returns the maximum value achievable for variable borrow rate, in bps
* @return The maximum rate
*/
function MAX_BORROW_RATE() external view returns (uint256);
/**
* @notice Returns the minimum optimal point, in bps
* @return The optimal point
*/
function MIN_OPTIMAL_POINT() external view returns (uint256);
/**
* @notice Returns the maximum optimal point, in bps
* @return The optimal point
*/
function MAX_OPTIMAL_POINT() external view returns (uint256);
/**
* notice Returns the full InterestRateData object for the given reserve, in ray
*
* @param reserve The reserve to get the data of
*
* @return The InterestRateDataRay object for the given reserve
*/
function getInterestRateData(address reserve) external view returns (InterestRateDataRay memory);
/**
* notice Returns the full InterestRateDataRay object for the given reserve, in bps
*
* @param reserve The reserve to get the data of
*
* @return The InterestRateData object for the given reserve
*/
function getInterestRateDataBps(address reserve) external view returns (InterestRateData memory);
/**
* @notice Returns the optimal usage rate for the given reserve in ray
*
* @param reserve The reserve to get the optimal usage rate of
*
* @return The optimal usage rate is the level of borrow / collateral at which the borrow rate
*/
function getOptimalUsageRatio(address reserve) external view returns (uint256);
/**
* @notice Returns the variable rate slope below optimal usage ratio in ray
* @dev It's the variable rate when usage ratio > 0 and <= OPTIMAL_USAGE_RATIO
*
* @param reserve The reserve to get the variable rate slope 1 of
*
* @return The variable rate slope
*/
function getVariableRateSlope1(address reserve) external view returns (uint256);
/**
* @notice Returns the variable rate slope above optimal usage ratio in ray
* @dev It's the variable rate when usage ratio > OPTIMAL_USAGE_RATIO
*
* @param reserve The reserve to get the variable rate slope 2 of
*
* @return The variable rate slope
*/
function getVariableRateSlope2(address reserve) external view returns (uint256);
/**
* @notice Returns the base variable borrow rate, in ray
*
* @param reserve The reserve to get the base variable borrow rate of
*
* @return The base variable borrow rate
*/
function getBaseVariableBorrowRate(address reserve) external view returns (uint256);
/**
* @notice Returns the maximum variable borrow rate, in ray
*
* @param reserve The reserve to get the maximum variable borrow rate of
*
* @return The maximum variable borrow rate
*/
function getMaxVariableBorrowRate(address reserve) external view returns (uint256);
/**
* @notice Sets interest rate data for an Aave rate strategy
* @param reserve The reserve to update
* @param rateData The reserve interest rate data to apply to the given reserve
* Being specific to this custom implementation, with custom struct type,
* overloading the function on the generic interface
*/
function setInterestRateParams(address reserve, InterestRateData calldata rateData) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {DataTypes} from '../protocol/libraries/types/DataTypes.sol';
/**
* @title IReserveInterestRateStrategy
* @author BGD Labs
* @notice Basic interface for any rate strategy used by the Aave protocol
*/
interface IReserveInterestRateStrategy {
/**
* @notice Sets interest rate data for an Aave rate strategy
* @param reserve The reserve to update
* @param rateData The abi encoded reserve interest rate data to apply to the given reserve
* Abstracted this way as rate strategies can be custom
*/
function setInterestRateParams(address reserve, bytes calldata rateData) external;
/**
* @notice Calculates the interest rates depending on the reserve's state and configurations
* @param params The parameters needed to calculate interest rates
* @return liquidityRate The liquidity rate expressed in ray
* @return variableBorrowRate The variable borrow rate expressed in ray
*/
function calculateInterestRates(
DataTypes.CalculateInterestRatesParams memory params
) external view returns (uint256, uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IPoolAddressesProvider
* @author Aave
* @notice Defines the basic interface for a Pool Addresses Provider.
*/
interface IPoolAddressesProvider {
/**
* @dev Emitted when the market identifier is updated.
* @param oldMarketId The old id of the market
* @param newMarketId The new id of the market
*/
event MarketIdSet(string indexed oldMarketId, string indexed newMarketId);
/**
* @dev Emitted when the pool is updated.
* @param oldAddress The old address of the Pool
* @param newAddress The new address of the Pool
*/
event PoolUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the pool configurator is updated.
* @param oldAddress The old address of the PoolConfigurator
* @param newAddress The new address of the PoolConfigurator
*/
event PoolConfiguratorUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the price oracle is updated.
* @param oldAddress The old address of the PriceOracle
* @param newAddress The new address of the PriceOracle
*/
event PriceOracleUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the ACL manager is updated.
* @param oldAddress The old address of the ACLManager
* @param newAddress The new address of the ACLManager
*/
event ACLManagerUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the ACL admin is updated.
* @param oldAddress The old address of the ACLAdmin
* @param newAddress The new address of the ACLAdmin
*/
event ACLAdminUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the price oracle sentinel is updated.
* @param oldAddress The old address of the PriceOracleSentinel
* @param newAddress The new address of the PriceOracleSentinel
*/
event PriceOracleSentinelUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the pool data provider is updated.
* @param oldAddress The old address of the PoolDataProvider
* @param newAddress The new address of the PoolDataProvider
*/
event PoolDataProviderUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when a new proxy is created.
* @param id The identifier of the proxy
* @param proxyAddress The address of the created proxy contract
* @param implementationAddress The address of the implementation contract
*/
event ProxyCreated(
bytes32 indexed id,
address indexed proxyAddress,
address indexed implementationAddress
);
/**
* @dev Emitted when a new non-proxied contract address is registered.
* @param id The identifier of the contract
* @param oldAddress The address of the old contract
* @param newAddress The address of the new contract
*/
event AddressSet(bytes32 indexed id, address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the implementation of the proxy registered with id is updated
* @param id The identifier of the contract
* @param proxyAddress The address of the proxy contract
* @param oldImplementationAddress The address of the old implementation contract
* @param newImplementationAddress The address of the new implementation contract
*/
event AddressSetAsProxy(
bytes32 indexed id,
address indexed proxyAddress,
address oldImplementationAddress,
address indexed newImplementationAddress
);
/**
* @notice Returns the id of the Aave market to which this contract points to.
* @return The market id
*/
function getMarketId() external view returns (string memory);
/**
* @notice Associates an id with a specific PoolAddressesProvider.
* @dev This can be used to create an onchain registry of PoolAddressesProviders to
* identify and validate multiple Aave markets.
* @param newMarketId The market id
*/
function setMarketId(string calldata newMarketId) external;
/**
* @notice Returns an address by its identifier.
* @dev The returned address might be an EOA or a contract, potentially proxied
* @dev It returns ZERO if there is no registered address with the given id
* @param id The id
* @return The address of the registered for the specified id
*/
function getAddress(bytes32 id) external view returns (address);
/**
* @notice General function to update the implementation of a proxy registered with
* certain `id`. If there is no proxy registered, it will instantiate one and
* set as implementation the `newImplementationAddress`.
* @dev IMPORTANT Use this function carefully, only for ids that don't have an explicit
* setter function, in order to avoid unexpected consequences
* @param id The id
* @param newImplementationAddress The address of the new implementation
*/
function setAddressAsProxy(bytes32 id, address newImplementationAddress) external;
/**
* @notice Sets an address for an id replacing the address saved in the addresses map.
* @dev IMPORTANT Use this function carefully, as it will do a hard replacement
* @param id The id
* @param newAddress The address to set
*/
function setAddress(bytes32 id, address newAddress) external;
/**
* @notice Returns the address of the Pool proxy.
* @return The Pool proxy address
*/
function getPool() external view returns (address);
/**
* @notice Updates the implementation of the Pool, or creates a proxy
* setting the new `pool` implementation when the function is called for the first time.
* @param newPoolImpl The new Pool implementation
*/
function setPoolImpl(address newPoolImpl) external;
/**
* @notice Returns the address of the PoolConfigurator proxy.
* @return The PoolConfigurator proxy address
*/
function getPoolConfigurator() external view returns (address);
/**
* @notice Updates the implementation of the PoolConfigurator, or creates a proxy
* setting the new `PoolConfigurator` implementation when the function is called for the first time.
* @param newPoolConfiguratorImpl The new PoolConfigurator implementation
*/
function setPoolConfiguratorImpl(address newPoolConfiguratorImpl) external;
/**
* @notice Returns the address of the price oracle.
* @return The address of the PriceOracle
*/
function getPriceOracle() external view returns (address);
/**
* @notice Updates the address of the price oracle.
* @param newPriceOracle The address of the new PriceOracle
*/
function setPriceOracle(address newPriceOracle) external;
/**
* @notice Returns the address of the ACL manager.
* @return The address of the ACLManager
*/
function getACLManager() external view returns (address);
/**
* @notice Updates the address of the ACL manager.
* @param newAclManager The address of the new ACLManager
*/
function setACLManager(address newAclManager) external;
/**
* @notice Returns the address of the ACL admin.
* @return The address of the ACL admin
*/
function getACLAdmin() external view returns (address);
/**
* @notice Updates the address of the ACL admin.
* @param newAclAdmin The address of the new ACL admin
*/
function setACLAdmin(address newAclAdmin) external;
/**
* @notice Returns the address of the price oracle sentinel.
* @return The address of the PriceOracleSentinel
*/
function getPriceOracleSentinel() external view returns (address);
/**
* @notice Updates the address of the price oracle sentinel.
* @param newPriceOracleSentinel The address of the new PriceOracleSentinel
*/
function setPriceOracleSentinel(address newPriceOracleSentinel) external;
/**
* @notice Returns the address of the data provider.
* @return The address of the DataProvider
*/
function getPoolDataProvider() external view returns (address);
/**
* @notice Updates the address of the data provider.
* @param newDataProvider The address of the new DataProvider
*/
function setPoolDataProvider(address newDataProvider) external;
}