Sonic Blaze Testnet
    /

    Contract Diff Checker

    Contract Name:
    ChefIncentivesController

    Contract Source Code:

    // SPDX-License-Identifier: agpl-3.0
    pragma solidity 0.7.6;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
      /**
       * @dev Returns true if `account` is a contract.
       *
       * [IMPORTANT]
       * ====
       * It is unsafe to assume that an address for which this function returns
       * false is an externally-owned account (EOA) and not a contract.
       *
       * Among others, `isContract` will return false for the following
       * types of addresses:
       *
       *  - an externally-owned account
       *  - a contract in construction
       *  - an address where a contract will be created
       *  - an address where a contract lived, but was destroyed
       * ====
       */
      function isContract(address account) internal view returns (bool) {
        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly {
          codehash := extcodehash(account)
        }
        return (codehash != accountHash && codehash != 0x0);
      }
    
      /**
       * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
       * `recipient`, forwarding all available gas and reverting on errors.
       *
       * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
       * of certain opcodes, possibly making contracts go over the 2300 gas limit
       * imposed by `transfer`, making them unable to receive funds via
       * `transfer`. {sendValue} removes this limitation.
       *
       * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
       *
       * IMPORTANT: because control is transferred to `recipient`, care must be
       * taken to not create reentrancy vulnerabilities. Consider using
       * {ReentrancyGuard} or the
       * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
       */
      function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, 'Address: insufficient balance');
    
        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{value: amount}('');
        require(success, 'Address: unable to send value, recipient may have reverted');
      }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity 0.7.6;
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
      function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
      }
    
      function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
      }
    }

    // SPDX-License-Identifier: agpl-3.0
    pragma solidity 0.7.6;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
      /**
       * @dev Returns the amount of tokens in existence.
       */
      function totalSupply() external view returns (uint256);
    
      /**
       * @dev Returns the amount of tokens owned by `account`.
       */
      function balanceOf(address account) external view returns (uint256);
    
      /**
       * @dev Moves `amount` tokens from the caller's account to `recipient`.
       *
       * Returns a boolean value indicating whether the operation succeeded.
       *
       * Emits a {Transfer} event.
       */
      function transfer(address recipient, uint256 amount) external returns (bool);
    
      /**
       * @dev Returns the remaining number of tokens that `spender` will be
       * allowed to spend on behalf of `owner` through {transferFrom}. This is
       * zero by default.
       *
       * This value changes when {approve} or {transferFrom} are called.
       */
      function allowance(address owner, address spender) external view returns (uint256);
    
      /**
       * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
       *
       * Returns a boolean value indicating whether the operation succeeded.
       *
       * IMPORTANT: Beware that changing an allowance with this method brings the risk
       * that someone may use both the old and the new allowance by unfortunate
       * transaction ordering. One possible solution to mitigate this race
       * condition is to first reduce the spender's allowance to 0 and set the
       * desired value afterwards:
       * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
       *
       * Emits an {Approval} event.
       */
      function approve(address spender, uint256 amount) external returns (bool);
    
      /**
       * @dev Moves `amount` tokens from `sender` to `recipient` using the
       * allowance mechanism. `amount` is then deducted from the caller's
       * allowance.
       *
       * Returns a boolean value indicating whether the operation succeeded.
       *
       * Emits a {Transfer} event.
       */
      function transferFrom(
        address sender,
        address recipient,
        uint256 amount
      ) external returns (bool);
    
      /**
       * @dev Emitted when `value` tokens are moved from one account (`from`) to
       * another (`to`).
       *
       * Note that `value` may be zero.
       */
      event Transfer(address indexed from, address indexed to, uint256 value);
    
      /**
       * @dev Emitted when the allowance of a `spender` for an `owner` is set by
       * a call to {approve}. `value` is the new allowance.
       */
      event Approval(address indexed owner, address indexed spender, uint256 value);
    }

    // SPDX-License-Identifier: MIT
    
    pragma solidity 0.7.6;
    
    import './Context.sol';
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable is Context {
      address private _owner;
    
      event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
      /**
       * @dev Initializes the contract setting the deployer as the initial owner.
       */
      constructor() {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
      }
    
      /**
       * @dev Returns the address of the current owner.
       */
      function owner() public view returns (address) {
        return _owner;
      }
    
      /**
       * @dev Throws if called by any account other than the owner.
       */
      modifier onlyOwner() {
        require(_owner == _msgSender(), 'Ownable: caller is not the owner');
        _;
      }
    
      /**
       * @dev Leaves the contract without owner. It will not be possible to call
       * `onlyOwner` functions anymore. Can only be called by the current owner.
       *
       * NOTE: Renouncing ownership will leave the contract without an owner,
       * thereby removing any functionality that is only available to the owner.
       */
      function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
      }
    
      /**
       * @dev Transfers ownership of the contract to a new account (`newOwner`).
       * Can only be called by the current owner.
       */
      function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), 'Ownable: new owner is the zero address');
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
      }
    }

    // SPDX-License-Identifier: MIT
    
    pragma solidity 0.7.6;
    
    import {IERC20} from './IERC20.sol';
    import {SafeMath} from './SafeMath.sol';
    import {Address} from './Address.sol';
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
      using SafeMath for uint256;
      using Address for address;
    
      function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
      ) internal {
        callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
      }
    
      function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
      ) internal {
        callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
      }
    
      function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
      ) internal {
        require(
          (value == 0) || (token.allowance(address(this), spender) == 0),
          'SafeERC20: approve from non-zero to non-zero allowance'
        );
        callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
      }
    
      function callOptionalReturn(IERC20 token, bytes memory data) private {
        require(address(token).isContract(), 'SafeERC20: call to non-contract');
    
        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = address(token).call(data);
        require(success, 'SafeERC20: low-level call failed');
    
        if (returndata.length > 0) {
          // Return data is optional
          // solhint-disable-next-line max-line-length
          require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed');
        }
      }
    }

    // SPDX-License-Identifier: agpl-3.0
    pragma solidity 0.7.6;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
      /**
       * @dev Returns the addition of two unsigned integers, reverting on
       * overflow.
       *
       * Counterpart to Solidity's `+` operator.
       *
       * Requirements:
       * - Addition cannot overflow.
       */
      function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, 'SafeMath: addition overflow');
    
        return c;
      }
    
      /**
       * @dev Returns the subtraction of two unsigned integers, reverting on
       * overflow (when the result is negative).
       *
       * Counterpart to Solidity's `-` operator.
       *
       * Requirements:
       * - Subtraction cannot overflow.
       */
      function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, 'SafeMath: subtraction overflow');
      }
    
      /**
       * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
       * overflow (when the result is negative).
       *
       * Counterpart to Solidity's `-` operator.
       *
       * Requirements:
       * - Subtraction cannot overflow.
       */
      function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
      ) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;
    
        return c;
      }
    
      /**
       * @dev Returns the multiplication of two unsigned integers, reverting on
       * overflow.
       *
       * Counterpart to Solidity's `*` operator.
       *
       * Requirements:
       * - Multiplication cannot overflow.
       */
      function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
          return 0;
        }
    
        uint256 c = a * b;
        require(c / a == b, 'SafeMath: multiplication overflow');
    
        return c;
      }
    
      /**
       * @dev Returns the integer division of two unsigned integers. Reverts on
       * division by zero. The result is rounded towards zero.
       *
       * Counterpart to Solidity's `/` operator. Note: this function uses a
       * `revert` opcode (which leaves remaining gas untouched) while Solidity
       * uses an invalid opcode to revert (consuming all remaining gas).
       *
       * Requirements:
       * - The divisor cannot be zero.
       */
      function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, 'SafeMath: division by zero');
      }
    
      /**
       * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
       * division by zero. The result is rounded towards zero.
       *
       * Counterpart to Solidity's `/` operator. Note: this function uses a
       * `revert` opcode (which leaves remaining gas untouched) while Solidity
       * uses an invalid opcode to revert (consuming all remaining gas).
       *
       * Requirements:
       * - The divisor cannot be zero.
       */
      function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
      ) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
        return c;
      }
    
      /**
       * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
       * Reverts when dividing by zero.
       *
       * Counterpart to Solidity's `%` operator. This function uses a `revert`
       * opcode (which leaves remaining gas untouched) while Solidity uses an
       * invalid opcode to revert (consuming all remaining gas).
       *
       * Requirements:
       * - The divisor cannot be zero.
       */
      function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, 'SafeMath: modulo by zero');
      }
    
      /**
       * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
       * Reverts with custom message when dividing by zero.
       *
       * Counterpart to Solidity's `%` operator. This function uses a `revert`
       * opcode (which leaves remaining gas untouched) while Solidity uses an
       * invalid opcode to revert (consuming all remaining gas).
       *
       * Requirements:
       * - The divisor cannot be zero.
       */
      function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
      ) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
      }
    }

    pragma solidity 0.7.6;
    
    interface IMultiFeeDistribution {
    
        function addReward(address rewardsToken) external;
        function mint(address user, uint256 amount, bool withPenalty) external;
    
    }

    pragma solidity 0.7.6;
    
    interface IOnwardIncentivesController {
        function handleAction(
            address _token,
            address _user,
            uint256 _balance,
            uint256 _totalSupply
        ) external;
    }

    // SPDX-License-Identifier: MIT
    
    pragma solidity 0.7.6;
    
    import "../interfaces/IMultiFeeDistribution.sol";
    import "../interfaces/IOnwardIncentivesController.sol";
    import "../dependencies/openzeppelin/contracts/IERC20.sol";
    import "../dependencies/openzeppelin/contracts/SafeERC20.sol";
    import "../dependencies/openzeppelin/contracts/SafeMath.sol";
    import "../dependencies/openzeppelin/contracts/Ownable.sol";
    
    // based on the Sushi MasterChef
    // https://github.com/sushiswap/sushiswap/blob/master/contracts/MasterChef.sol
    contract ChefIncentivesController is Ownable {
        using SafeMath for uint256;
        using SafeERC20 for IERC20;
    
        // Info of each user.
        struct UserInfo {
            uint256 amount;
            uint256 rewardDebt;
        }
        // Info of each pool.
        struct PoolInfo {
            uint256 totalSupply;
            uint256 allocPoint; // How many allocation points assigned to this pool.
            uint256 lastRewardTime; // Last second that reward distribution occurs.
            uint256 accRewardPerShare; // Accumulated rewards per share, times 1e12. See below.
            IOnwardIncentivesController onwardIncentives;
        }
        // Info about token emissions for a given time period.
        struct EmissionPoint {
            uint128 startTimeOffset;
            uint128 rewardsPerSecond;
        }
    
        address public poolConfigurator;
    
        IMultiFeeDistribution public rewardMinter;
        uint256 public rewardsPerSecond;
        uint256 public immutable maxMintableTokens;
        uint256 public mintedTokens;
    
        // Info of each pool.
        address[] public registeredTokens;
        mapping(address => PoolInfo) public poolInfo;
    
        // Data about the future reward rates. emissionSchedule stored in reverse chronological order,
        // whenever the number of blocks since the start block exceeds the next block offset a new
        // reward rate is applied.
        EmissionPoint[] public emissionSchedule;
        // token => user => Info of each user that stakes LP tokens.
        mapping(address => mapping(address => UserInfo)) public userInfo;
        // user => base claimable balance
        mapping(address => uint256) public userBaseClaimable;
        // Total allocation poitns. Must be the sum of all allocation points in all pools.
        uint256 public totalAllocPoint = 0;
        // The block number when reward mining starts.
        uint256 public startTime;
    
        // account earning rewards => receiver of rewards for this account
        // if receiver is set to address(0), rewards are paid to the earner
        // this is used to aid 3rd party contract integrations
        mapping (address => address) public claimReceiver;
    
        event BalanceUpdated(
            address indexed token,
            address indexed user,
            uint256 balance,
            uint256 totalSupply
        );
    
        constructor(
            uint128[] memory _startTimeOffset,
            uint128[] memory _rewardsPerSecond,
            address _poolConfigurator,
            IMultiFeeDistribution _rewardMinter,
            uint256 _maxMintable
        )
            Ownable()
        {
            poolConfigurator = _poolConfigurator;
            rewardMinter = _rewardMinter;
            uint256 length = _startTimeOffset.length;
            for (uint256 i = length - 1; i + 1 != 0; i--) {
                emissionSchedule.push(
                    EmissionPoint({
                        startTimeOffset: _startTimeOffset[i],
                        rewardsPerSecond: _rewardsPerSecond[i]
                    })
                );
            }
            maxMintableTokens = _maxMintable;
        }
    
        // Start the party
        function start() public onlyOwner {
            require(startTime == 0);
            startTime = block.timestamp;
        }
    
        // Add a new lp to the pool. Can only be called by the poolConfigurator.
        function addPool(address _token, uint256 _allocPoint) external {
            require(msg.sender == poolConfigurator);
            require(poolInfo[_token].lastRewardTime == 0);
            _updateEmissions();
            totalAllocPoint = totalAllocPoint.add(_allocPoint);
            registeredTokens.push(_token);
            poolInfo[_token] = PoolInfo({
                totalSupply: 0,
                allocPoint: _allocPoint,
                lastRewardTime: block.timestamp,
                accRewardPerShare: 0,
                onwardIncentives: IOnwardIncentivesController(0)
            });
        }
    
        // Update the given pool's allocation point. Can only be called by the owner.
        function batchUpdateAllocPoint(
            address[] calldata _tokens,
            uint256[] calldata _allocPoints
        ) public onlyOwner {
            require(_tokens.length == _allocPoints.length);
            _massUpdatePools();
            uint256 _totalAllocPoint = totalAllocPoint;
            for (uint256 i = 0; i < _tokens.length; i++) {
                PoolInfo storage pool = poolInfo[_tokens[i]];
                require(pool.lastRewardTime > 0);
                _totalAllocPoint = _totalAllocPoint.sub(pool.allocPoint).add(_allocPoints[i]);
                pool.allocPoint = _allocPoints[i];
            }
            totalAllocPoint = _totalAllocPoint;
        }
    
        function setOnwardIncentives(
            address _token,
            IOnwardIncentivesController _incentives
        )
            external
            onlyOwner
        {
            require(poolInfo[_token].lastRewardTime != 0);
            poolInfo[_token].onwardIncentives = _incentives;
        }
    
        function setClaimReceiver(address _user, address _receiver) external {
            require(msg.sender == _user || msg.sender == owner());
            claimReceiver[_user] = _receiver;
        }
    
        function poolLength() external view returns (uint256) {
            return registeredTokens.length;
        }
    
        function claimableReward(address _user, address[] calldata _tokens)
            external
            view
            returns (uint256[] memory)
        {
            uint256[] memory claimable = new uint256[](_tokens.length);
            for (uint256 i = 0; i < _tokens.length; i++) {
                address token = _tokens[i];
                PoolInfo storage pool = poolInfo[token];
                UserInfo storage user = userInfo[token][_user];
                uint256 accRewardPerShare = pool.accRewardPerShare;
                uint256 lpSupply = pool.totalSupply;
                if (block.timestamp > pool.lastRewardTime && lpSupply != 0) {
                    uint256 duration = block.timestamp.sub(pool.lastRewardTime);
                    uint256 reward = duration.mul(rewardsPerSecond).mul(pool.allocPoint).div(totalAllocPoint);
                    accRewardPerShare = accRewardPerShare.add(reward.mul(1e12).div(lpSupply));
                }
                claimable[i] = user.amount.mul(accRewardPerShare).div(1e12).sub(user.rewardDebt);
            }
            return claimable;
        }
    
    
        function _updateEmissions() internal {
            uint256 length = emissionSchedule.length;
            if (startTime > 0 && length > 0) {
                EmissionPoint memory e = emissionSchedule[length-1];
                if (block.timestamp.sub(startTime) > e.startTimeOffset) {
                     _massUpdatePools();
                    rewardsPerSecond = uint256(e.rewardsPerSecond);
                    emissionSchedule.pop();
                }
            }
        }
    
        // Update reward variables for all pools
        function _massUpdatePools() internal {
            uint256 totalAP = totalAllocPoint;
            uint256 length = registeredTokens.length;
            for (uint256 i = 0; i < length; ++i) {
                _updatePool(poolInfo[registeredTokens[i]], totalAP);
            }
        }
    
        // Update reward variables of the given pool to be up-to-date.
        function _updatePool(PoolInfo storage pool, uint256 _totalAllocPoint) internal {
            if (block.timestamp <= pool.lastRewardTime) {
                return;
            }
            uint256 lpSupply = pool.totalSupply;
            if (lpSupply == 0) {
                pool.lastRewardTime = block.timestamp;
                return;
            }
            uint256 duration = block.timestamp.sub(pool.lastRewardTime);
            uint256 reward = duration.mul(rewardsPerSecond).mul(pool.allocPoint).div(_totalAllocPoint);
            pool.accRewardPerShare = pool.accRewardPerShare.add(reward.mul(1e12).div(lpSupply));
            pool.lastRewardTime = block.timestamp;
        }
    
        function _mint(address _user, uint256 _amount) internal {
            uint256 minted = mintedTokens;
            if (minted.add(_amount) > maxMintableTokens) {
                _amount = maxMintableTokens.sub(minted);
            }
            if (_amount > 0) {
                mintedTokens = minted.add(_amount);
                address receiver = claimReceiver[_user];
                if (receiver == address(0)) receiver = _user;
                rewardMinter.mint(receiver, _amount, true);
            }
        }
    
        function handleAction(address _user, uint256 _balance, uint256 _totalSupply) external {
            PoolInfo storage pool = poolInfo[msg.sender];
            require(pool.lastRewardTime > 0);
            _updateEmissions();
            _updatePool(pool, totalAllocPoint);
            UserInfo storage user = userInfo[msg.sender][_user];
            uint256 amount = user.amount;
            uint256 accRewardPerShare = pool.accRewardPerShare;
            if (amount > 0) {
                uint256 pending = amount.mul(accRewardPerShare).div(1e12).sub(user.rewardDebt);
                if (pending > 0) {
                    userBaseClaimable[_user] = userBaseClaimable[_user].add(pending);
                }
            }
            user.amount = _balance;
            user.rewardDebt = _balance.mul(accRewardPerShare).div(1e12);
            pool.totalSupply = _totalSupply;
            if (pool.onwardIncentives != IOnwardIncentivesController(0)) {
                pool.onwardIncentives.handleAction(msg.sender, _user, _balance, _totalSupply);
            }
            emit BalanceUpdated(msg.sender, _user, _balance, _totalSupply);
        }
    
        // Claim pending rewards for one or more pools.
        // Rewards are not received directly, they are minted by the rewardMinter.
        function claim(address _user, address[] calldata _tokens) external {
            _updateEmissions();
            uint256 pending = userBaseClaimable[_user];
            userBaseClaimable[_user] = 0;
            uint256 _totalAllocPoint = totalAllocPoint;
            for (uint i = 0; i < _tokens.length; i++) {
                PoolInfo storage pool = poolInfo[_tokens[i]];
                require(pool.lastRewardTime > 0);
                _updatePool(pool, _totalAllocPoint);
                UserInfo storage user = userInfo[_tokens[i]][_user];
                uint256 rewardDebt = user.amount.mul(pool.accRewardPerShare).div(1e12);
                pending = pending.add(rewardDebt.sub(user.rewardDebt));
                user.rewardDebt = rewardDebt;
            }
            _mint(_user, pending);
        }
    
    }

    Please enter a contract address above to load the contract details and source code.

    Context size (optional):