Contract Name:
ChefIncentivesController
Contract Source Code:
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly {
codehash := extcodehash(account)
}
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, 'Address: insufficient balance');
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{value: amount}('');
require(success, 'Address: unable to send value, recipient may have reverted');
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import './Context.sol';
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), 'Ownable: caller is not the owner');
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), 'Ownable: new owner is the zero address');
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import {IERC20} from './IERC20.sol';
import {SafeMath} from './SafeMath.sol';
import {Address} from './Address.sol';
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
'SafeERC20: approve from non-zero to non-zero allowance'
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), 'SafeERC20: call to non-contract');
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, 'SafeERC20: low-level call failed');
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed');
}
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, 'SafeMath: addition overflow');
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, 'SafeMath: subtraction overflow');
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, 'SafeMath: multiplication overflow');
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, 'SafeMath: division by zero');
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, 'SafeMath: modulo by zero');
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
pragma solidity 0.7.6;
interface IMultiFeeDistribution {
function addReward(address rewardsToken) external;
function mint(address user, uint256 amount, bool withPenalty) external;
}
pragma solidity 0.7.6;
interface IOnwardIncentivesController {
function handleAction(
address _token,
address _user,
uint256 _balance,
uint256 _totalSupply
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import "../interfaces/IMultiFeeDistribution.sol";
import "../interfaces/IOnwardIncentivesController.sol";
import "../dependencies/openzeppelin/contracts/IERC20.sol";
import "../dependencies/openzeppelin/contracts/SafeERC20.sol";
import "../dependencies/openzeppelin/contracts/SafeMath.sol";
import "../dependencies/openzeppelin/contracts/Ownable.sol";
// based on the Sushi MasterChef
// https://github.com/sushiswap/sushiswap/blob/master/contracts/MasterChef.sol
contract ChefIncentivesController is Ownable {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// Info of each user.
struct UserInfo {
uint256 amount;
uint256 rewardDebt;
}
// Info of each pool.
struct PoolInfo {
uint256 totalSupply;
uint256 allocPoint; // How many allocation points assigned to this pool.
uint256 lastRewardTime; // Last second that reward distribution occurs.
uint256 accRewardPerShare; // Accumulated rewards per share, times 1e12. See below.
IOnwardIncentivesController onwardIncentives;
}
// Info about token emissions for a given time period.
struct EmissionPoint {
uint128 startTimeOffset;
uint128 rewardsPerSecond;
}
address public poolConfigurator;
IMultiFeeDistribution public rewardMinter;
uint256 public rewardsPerSecond;
uint256 public immutable maxMintableTokens;
uint256 public mintedTokens;
// Info of each pool.
address[] public registeredTokens;
mapping(address => PoolInfo) public poolInfo;
// Data about the future reward rates. emissionSchedule stored in reverse chronological order,
// whenever the number of blocks since the start block exceeds the next block offset a new
// reward rate is applied.
EmissionPoint[] public emissionSchedule;
// token => user => Info of each user that stakes LP tokens.
mapping(address => mapping(address => UserInfo)) public userInfo;
// user => base claimable balance
mapping(address => uint256) public userBaseClaimable;
// Total allocation poitns. Must be the sum of all allocation points in all pools.
uint256 public totalAllocPoint = 0;
// The block number when reward mining starts.
uint256 public startTime;
// account earning rewards => receiver of rewards for this account
// if receiver is set to address(0), rewards are paid to the earner
// this is used to aid 3rd party contract integrations
mapping (address => address) public claimReceiver;
event BalanceUpdated(
address indexed token,
address indexed user,
uint256 balance,
uint256 totalSupply
);
constructor(
uint128[] memory _startTimeOffset,
uint128[] memory _rewardsPerSecond,
address _poolConfigurator,
IMultiFeeDistribution _rewardMinter,
uint256 _maxMintable
)
Ownable()
{
poolConfigurator = _poolConfigurator;
rewardMinter = _rewardMinter;
uint256 length = _startTimeOffset.length;
for (uint256 i = length - 1; i + 1 != 0; i--) {
emissionSchedule.push(
EmissionPoint({
startTimeOffset: _startTimeOffset[i],
rewardsPerSecond: _rewardsPerSecond[i]
})
);
}
maxMintableTokens = _maxMintable;
}
// Start the party
function start() public onlyOwner {
require(startTime == 0);
startTime = block.timestamp;
}
// Add a new lp to the pool. Can only be called by the poolConfigurator.
function addPool(address _token, uint256 _allocPoint) external {
require(msg.sender == poolConfigurator);
require(poolInfo[_token].lastRewardTime == 0);
_updateEmissions();
totalAllocPoint = totalAllocPoint.add(_allocPoint);
registeredTokens.push(_token);
poolInfo[_token] = PoolInfo({
totalSupply: 0,
allocPoint: _allocPoint,
lastRewardTime: block.timestamp,
accRewardPerShare: 0,
onwardIncentives: IOnwardIncentivesController(0)
});
}
// Update the given pool's allocation point. Can only be called by the owner.
function batchUpdateAllocPoint(
address[] calldata _tokens,
uint256[] calldata _allocPoints
) public onlyOwner {
require(_tokens.length == _allocPoints.length);
_massUpdatePools();
uint256 _totalAllocPoint = totalAllocPoint;
for (uint256 i = 0; i < _tokens.length; i++) {
PoolInfo storage pool = poolInfo[_tokens[i]];
require(pool.lastRewardTime > 0);
_totalAllocPoint = _totalAllocPoint.sub(pool.allocPoint).add(_allocPoints[i]);
pool.allocPoint = _allocPoints[i];
}
totalAllocPoint = _totalAllocPoint;
}
function setOnwardIncentives(
address _token,
IOnwardIncentivesController _incentives
)
external
onlyOwner
{
require(poolInfo[_token].lastRewardTime != 0);
poolInfo[_token].onwardIncentives = _incentives;
}
function setClaimReceiver(address _user, address _receiver) external {
require(msg.sender == _user || msg.sender == owner());
claimReceiver[_user] = _receiver;
}
function poolLength() external view returns (uint256) {
return registeredTokens.length;
}
function claimableReward(address _user, address[] calldata _tokens)
external
view
returns (uint256[] memory)
{
uint256[] memory claimable = new uint256[](_tokens.length);
for (uint256 i = 0; i < _tokens.length; i++) {
address token = _tokens[i];
PoolInfo storage pool = poolInfo[token];
UserInfo storage user = userInfo[token][_user];
uint256 accRewardPerShare = pool.accRewardPerShare;
uint256 lpSupply = pool.totalSupply;
if (block.timestamp > pool.lastRewardTime && lpSupply != 0) {
uint256 duration = block.timestamp.sub(pool.lastRewardTime);
uint256 reward = duration.mul(rewardsPerSecond).mul(pool.allocPoint).div(totalAllocPoint);
accRewardPerShare = accRewardPerShare.add(reward.mul(1e12).div(lpSupply));
}
claimable[i] = user.amount.mul(accRewardPerShare).div(1e12).sub(user.rewardDebt);
}
return claimable;
}
function _updateEmissions() internal {
uint256 length = emissionSchedule.length;
if (startTime > 0 && length > 0) {
EmissionPoint memory e = emissionSchedule[length-1];
if (block.timestamp.sub(startTime) > e.startTimeOffset) {
_massUpdatePools();
rewardsPerSecond = uint256(e.rewardsPerSecond);
emissionSchedule.pop();
}
}
}
// Update reward variables for all pools
function _massUpdatePools() internal {
uint256 totalAP = totalAllocPoint;
uint256 length = registeredTokens.length;
for (uint256 i = 0; i < length; ++i) {
_updatePool(poolInfo[registeredTokens[i]], totalAP);
}
}
// Update reward variables of the given pool to be up-to-date.
function _updatePool(PoolInfo storage pool, uint256 _totalAllocPoint) internal {
if (block.timestamp <= pool.lastRewardTime) {
return;
}
uint256 lpSupply = pool.totalSupply;
if (lpSupply == 0) {
pool.lastRewardTime = block.timestamp;
return;
}
uint256 duration = block.timestamp.sub(pool.lastRewardTime);
uint256 reward = duration.mul(rewardsPerSecond).mul(pool.allocPoint).div(_totalAllocPoint);
pool.accRewardPerShare = pool.accRewardPerShare.add(reward.mul(1e12).div(lpSupply));
pool.lastRewardTime = block.timestamp;
}
function _mint(address _user, uint256 _amount) internal {
uint256 minted = mintedTokens;
if (minted.add(_amount) > maxMintableTokens) {
_amount = maxMintableTokens.sub(minted);
}
if (_amount > 0) {
mintedTokens = minted.add(_amount);
address receiver = claimReceiver[_user];
if (receiver == address(0)) receiver = _user;
rewardMinter.mint(receiver, _amount, true);
}
}
function handleAction(address _user, uint256 _balance, uint256 _totalSupply) external {
PoolInfo storage pool = poolInfo[msg.sender];
require(pool.lastRewardTime > 0);
_updateEmissions();
_updatePool(pool, totalAllocPoint);
UserInfo storage user = userInfo[msg.sender][_user];
uint256 amount = user.amount;
uint256 accRewardPerShare = pool.accRewardPerShare;
if (amount > 0) {
uint256 pending = amount.mul(accRewardPerShare).div(1e12).sub(user.rewardDebt);
if (pending > 0) {
userBaseClaimable[_user] = userBaseClaimable[_user].add(pending);
}
}
user.amount = _balance;
user.rewardDebt = _balance.mul(accRewardPerShare).div(1e12);
pool.totalSupply = _totalSupply;
if (pool.onwardIncentives != IOnwardIncentivesController(0)) {
pool.onwardIncentives.handleAction(msg.sender, _user, _balance, _totalSupply);
}
emit BalanceUpdated(msg.sender, _user, _balance, _totalSupply);
}
// Claim pending rewards for one or more pools.
// Rewards are not received directly, they are minted by the rewardMinter.
function claim(address _user, address[] calldata _tokens) external {
_updateEmissions();
uint256 pending = userBaseClaimable[_user];
userBaseClaimable[_user] = 0;
uint256 _totalAllocPoint = totalAllocPoint;
for (uint i = 0; i < _tokens.length; i++) {
PoolInfo storage pool = poolInfo[_tokens[i]];
require(pool.lastRewardTime > 0);
_updatePool(pool, _totalAllocPoint);
UserInfo storage user = userInfo[_tokens[i]][_user];
uint256 rewardDebt = user.amount.mul(pool.accRewardPerShare).div(1e12);
pending = pending.add(rewardDebt.sub(user.rewardDebt));
user.rewardDebt = rewardDebt;
}
_mint(_user, pending);
}
}