Contract Name:
Groth16Verifier
Contract Source Code:
// SPDX-License-Identifier: GPL-3.0
/*
Copyright 2021 0KIMS association.
This file is generated with [snarkJS](https://github.com/iden3/snarkjs).
snarkJS is a free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
snarkJS is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with snarkJS. If not, see <https://www.gnu.org/licenses/>.
*/
pragma solidity >=0.7.0 <0.9.0;
contract Groth16Verifier {
// Scalar field size
uint256 constant r = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
// Base field size
uint256 constant q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
// Verification Key data
uint256 constant alphax = 20278960117665255930956931411914802199452455688510700007484218628454862703005;
uint256 constant alphay = 8575060622555928158413089900712854124305790299421637476836288628227374398559;
uint256 constant betax1 = 956819689188258924840405488187214537234007915841859736605976400561156834045;
uint256 constant betax2 = 5512694780117179792541447468811059908764282961541839662297025436316361578058;
uint256 constant betay1 = 7451947854894997673237118264915926654038391823038721277373517692033286619639;
uint256 constant betay2 = 14660133829310254548336650107134298423380694787525243690666864507426417901962;
uint256 constant gammax1 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant gammax2 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant gammay1 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint256 constant gammay2 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
uint256 constant deltax1 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant deltax2 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant deltay1 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint256 constant deltay2 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
uint256 constant IC0x = 19258452758649829779975657373453162671154184301111133293653767809341482835757;
uint256 constant IC0y = 4933218903410158759364186623905116793037673881032724437095763931565582672074;
uint256 constant IC1x = 17676977807998058538308211829830040138535709159246171248502042077831087527722;
uint256 constant IC1y = 17925669318859573106185011788367748739601726704675007969709720194010653316699;
uint256 constant IC2x = 9864679370304184105224638875321773795293877039887754851737616915063048887705;
uint256 constant IC2y = 14771081496834736738866719094863898761420160347198374121693062754092316029463;
// Memory data
uint16 constant pVk = 0;
uint16 constant pPairing = 128;
uint16 constant pLastMem = 896;
function verifyProof(uint[2] calldata _pA, uint[2][2] calldata _pB, uint[2] calldata _pC, uint[2] calldata _pubSignals) public view returns (bool) {
assembly {
function checkField(v) {
if iszero(lt(v, r)) {
mstore(0, 0)
return(0, 0x20)
}
}
// G1 function to multiply a G1 value(x,y) to value in an address
function g1_mulAccC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn, 32), y)
mstore(add(mIn, 64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)
if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
mstore(add(mIn, 64), mload(pR))
mstore(add(mIn, 96), mload(add(pR, 32)))
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
}
function checkPairing(pA, pB, pC, pubSignals, pMem) -> isOk {
let _pPairing := add(pMem, pPairing)
let _pVk := add(pMem, pVk)
mstore(_pVk, IC0x)
mstore(add(_pVk, 32), IC0y)
// Compute the linear combination vk_x
g1_mulAccC(_pVk, IC1x, IC1y, calldataload(add(pubSignals, 0)))
g1_mulAccC(_pVk, IC2x, IC2y, calldataload(add(pubSignals, 32)))
// -A
mstore(_pPairing, calldataload(pA))
mstore(add(_pPairing, 32), mod(sub(q, calldataload(add(pA, 32))), q))
// B
mstore(add(_pPairing, 64), calldataload(pB))
mstore(add(_pPairing, 96), calldataload(add(pB, 32)))
mstore(add(_pPairing, 128), calldataload(add(pB, 64)))
mstore(add(_pPairing, 160), calldataload(add(pB, 96)))
// alpha1
mstore(add(_pPairing, 192), alphax)
mstore(add(_pPairing, 224), alphay)
// beta2
mstore(add(_pPairing, 256), betax1)
mstore(add(_pPairing, 288), betax2)
mstore(add(_pPairing, 320), betay1)
mstore(add(_pPairing, 352), betay2)
// vk_x
mstore(add(_pPairing, 384), mload(add(pMem, pVk)))
mstore(add(_pPairing, 416), mload(add(pMem, add(pVk, 32))))
// gamma2
mstore(add(_pPairing, 448), gammax1)
mstore(add(_pPairing, 480), gammax2)
mstore(add(_pPairing, 512), gammay1)
mstore(add(_pPairing, 544), gammay2)
// C
mstore(add(_pPairing, 576), calldataload(pC))
mstore(add(_pPairing, 608), calldataload(add(pC, 32)))
// delta2
mstore(add(_pPairing, 640), deltax1)
mstore(add(_pPairing, 672), deltax2)
mstore(add(_pPairing, 704), deltay1)
mstore(add(_pPairing, 736), deltay2)
let success := staticcall(sub(gas(), 2000), 8, _pPairing, 768, _pPairing, 0x20)
isOk := and(success, mload(_pPairing))
}
let pMem := mload(0x40)
mstore(0x40, add(pMem, pLastMem))
// Validate that all evaluations ∈ F
checkField(calldataload(add(_pubSignals, 0)))
checkField(calldataload(add(_pubSignals, 32)))
// Validate all evaluations
let isValid := checkPairing(_pA, _pB, _pC, _pubSignals, pMem)
mstore(0, isValid)
return(0, 0x20)
}
}
}