Contract Name:
MoonshotFactory
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.20;
import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys a `value` amount of tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 value) public virtual {
_burn(_msgSender(), value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, deducting from
* the caller's allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `value`.
*/
function burnFrom(address account, uint256 value) public virtual {
_spendAllowance(account, _msgSender(), value);
_burn(account, value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;
interface IBaseV1Factory {
function allPairsLength() external view returns (uint);
function isPair(address pair) external view returns (bool);
function pairCodeHash() external pure returns (bytes32);
function getPair(address tokenA, address token, bool stable) external view returns (address);
function createPair(address tokenA, address tokenB, bool stable) external returns (address pair);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;
interface IMoonshotFactory {
error InvalidSignature();
error SignatureIsUsed();
error FailedToSendETH();
error NotReadyForMigration();
error TotalSupplyZeroValue();
error VirtualTokenReservesZeroValue();
error VirtualCollateralReservesZeroValue();
error McUpperLimitZeroValue();
error McLowerLimitZeroValue();
error TokensMigrationThresholdZeroValue();
error TreasuryZeroValue();
error DexTreasuryZeroValue();
error SignerZeroValue();
error McLowerLimitGreaterThanUpperLimit();
error FeeBPSCheckFailed();
event SetConfig(
uint256 totalSupply,
uint256 virtualTokenReserves,
uint256 virtualCollateralReserves,
uint256 feeBasisPoints,
uint256 dexFeeBasisPoints,
uint256 migrationFeeFixed,
uint256 poolCreationFee,
uint256 mcUpperLimit,
uint256 mcLowerLimit,
uint256 tokensMigrationThreshold,
address treasury,
address dexTreasury,
address signer
);
event NewMoonshotToken(address addr, address creator, bytes signature);
event NewMoonshotTokenAndBuy(
address addr,
address creator,
bytes signature,
uint256 tokenAmount,
uint256 collateralAmount,
uint256 fee,
uint256 dexFee,
uint256 curveProgressBps
);
event MarketcapReached(address token);
event Migrated(
address token,
uint256 tokensToMigrate,
uint256 tokensToBurn,
uint256 collateralToMigrate,
uint256 migrationFee,
address pair
);
event BuyExactOut(
address indexed buyer,
address indexed token,
uint256 tokenAmount,
uint256 curvePositionAfterTrade,
uint256 collateralAmount,
uint256 refund,
uint256 fee,
uint256 dexFee,
uint256 curveProgressBps
);
event BuyExactIn(
address indexed buyer,
address indexed token,
uint256 tokenAmount,
uint256 curvePositionAfterTrade,
uint256 collateralAmount,
uint256 fee,
uint256 dexFee,
uint256 curveProgressBps
);
event SellExactIn(
address indexed seller,
address indexed token,
uint256 tokenAmount,
uint256 curvePositionAfterTrade,
uint256 collateralAmount,
uint256 fee,
uint256 dexFee,
uint256 curveProgressBps
);
event SellExactOut(
address indexed seller,
address indexed token,
uint256 tokenAmount,
uint256 curvePositionAfterTrade,
uint256 collateralAmount,
uint256 fee,
uint256 dexFee,
uint256 curveProgressBps
);
function buyExactOut(address _token, uint256 _tokenAmount, uint256 _maxCollateralAmount) external payable;
function buyExactIn(address _token, uint256 _amountOutMin) external payable;
function sellExactIn(address _token, uint256 _tokenAmount, uint256 _amountCollateralMin) external;
function sellExactOut(address _token, uint256 _tokenAmountMax, uint256 _amountCollateral) external;
function setConfig(
uint256 _totalSupply,
uint256 _virtualTokenReserves,
uint256 _virtualCollateralReserves,
uint256 _feeBasisPoints,
uint256 _dexFeeBasisPoints,
uint256 _migrationFeeFixed,
uint256 _poolCreationFee,
uint256 _mcUpperLimit,
uint256 _mcLowerLimit,
uint256 _tokensMigrationThreshold,
address _treasury,
address _dexTreasury,
address _signer
) external;
function createMoonshotToken(
string memory _name,
string memory _symbol,
uint256 _nonce,
bytes memory _signature
) external returns (address);
function createMoonshotTokenAndBuy(
string memory _name,
string memory _symbol,
uint256 _nonce,
uint256 _tokenAmountMin,
bytes memory _signature
) external payable returns (address);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IMoonshotToken is IERC20 {
enum CurveType {
ConstantProductV1
}
struct ConstructorParams {
string name;
string symbol;
address creator;
uint256 totalSupply;
uint256 virtualTokenReserves;
uint256 virtualCollateralReserves;
uint256 feeBasisPoints;
uint256 dexFeeBasisPoints;
uint256 migrationFeeFixed;
uint256 poolCreationFee;
uint256 mcLowerLimit;
uint256 mcUpperLimit;
uint256 tokensMigrationThreshold;
address treasury;
address solidlyRouter;
address dexTreasury;
}
error NotEnoughETHReserves();
error InsufficientTokenReserves();
error FailedToSendETH();
error NotEnoughtETHToBuyTokens();
error SlippageCheckFailed();
error MarketcapThresholdReached();
error SendingToPairIsNotAllowedBeforeMigration();
error PairNotCreated();
error TradingStopped();
error OnlyFactory();
function buyExactOut(
uint256 _tokenAmount,
uint256 _maxCollateralAmount
) external payable returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee);
function buyExactIn(
uint256 _amountOutMin
) external payable returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee);
function sellExactIn(
uint256 _tokenAmount,
uint256 _amountOutMin
) external payable returns (uint256 collateralToReceiveMinusFee, uint256 helioFee, uint256 dexFee);
function sellExactOut(
uint256 _tokenAmountMax,
uint256 _amountCollateral
)
external
payable
returns (uint256 collateralToReceiveMinusFee, uint256 tokensOut, uint256 helioFee, uint256 dexFee);
function getAmountOutAndFee(
uint256 _amountIn,
uint256 _reserveIn,
uint256 _reserveOut,
bool _paymentTokenIsIn
) external view returns (uint256 amountOut, uint256 fee);
function getAmountInAndFee(
uint256 _amountOut,
uint256 _reserveIn,
uint256 _reserveOut,
bool _paymentTokenIsOut
) external view returns (uint256 amountIn, uint256 fee);
function migrate()
external
returns (uint256 tokensToMigrate, uint256 tokensToBurn, uint256 collateralAmount, address pair);
function getCurveProgressBps() external view returns (uint256);
function getMarketCap() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
interface IRouter02 {
struct Route {
address from;
address to;
bool stable;
}
function factory() external view returns (address);
function weth() external view returns (address);
function pairFor(address tokenA, address tokenB, bool stable) external view returns (address pair);
function getReserves(
address tokenA,
address tokenB,
bool stable
) external view returns (uint reserveA, uint reserveB);
function getAmountOut(
uint amountIn,
address tokenIn,
address tokenOut
) external view returns (uint amount, bool stable);
function getAmountOut(
uint amountIn,
address tokenIn,
address tokenOut,
bool stable
) external view returns (uint amount);
function getAmountsOut(uint amountIn, Route[] memory routes) external view returns (uint[] memory amounts);
function isPair(address pair) external view returns (bool);
function quoteAddLiquidity(
address tokenA,
address tokenB,
bool stable,
uint amountADesired,
uint amountBDesired
) external view returns (uint amountA, uint amountB, uint liquidity);
function quoteRemoveLiquidity(
address tokenA,
address tokenB,
bool stable,
uint liquidity
) external view returns (uint amountA, uint amountB);
function addLiquidity(
address tokenA,
address tokenB,
bool stable,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
bool stable,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
bool stable,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
bool stable,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
bool stable,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
bool stable,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint amountToken, uint amountETH);
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
bool stable,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
bool stable,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokensSimple(
uint amountIn,
uint amountOutMin,
address tokenFrom,
address tokenTo,
bool stable,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
Route[] calldata routes,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(
uint amountOutMin,
Route[] calldata routes,
address to,
uint deadline
) external payable returns (uint[] memory amounts);
function swapExactTokensForETH(
uint amountIn,
uint amountOutMin,
Route[] calldata routes,
address to,
uint deadline
) external returns (uint[] memory amounts);
function UNSAFE_swapExactTokensForTokens(
uint[] memory amounts,
Route[] calldata routes,
address to,
uint deadline
) external returns (uint[] memory);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
Route[] calldata routes,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
Route[] calldata routes,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
Route[] calldata routes,
address to,
uint deadline
) external;
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;
import {MoonshotToken} from "./MoonshotToken.sol";
import {IMoonshotFactory} from "./interfaces/IMoonshotFactory.sol";
import {IMoonshotToken} from "./interfaces/IMoonshotToken.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
contract MoonshotFactory is IMoonshotFactory, Ownable, ReentrancyGuard {
uint256 public totalSupply;
uint256 public virtualTokenReserves;
uint256 public virtualCollateralReserves;
uint256 public feeBasisPoints;
uint256 public mcUpperLimit;
uint256 public mcLowerLimit;
uint256 public tokensMigrationThreshold;
uint256 public migrationFeeFixed;
uint256 public poolCreationFee;
uint256 public dexFeeBasisPoints;
address public dexTreasury;
address public treasury;
address public immutable ROUTER_02;
address public signer;
mapping(bytes32 => bool) public usedSignatures;
mapping(address => bool) public readyForMigration;
address[] public moonshotTokens;
uint256 private constant MAX_BPS = 2_500;
constructor(
uint256 _totalSupply,
uint256 _virtualTokenReserves,
uint256 _virtualCollateralReserves,
uint256 _feeBasisPoints,
uint256 _dexFeeBasisPoints,
uint256 _migrationFeeFixed,
uint256 _poolCreationFee,
uint256 _mcUpperLimit,
uint256 _mcLowerLimit,
uint256 _tokensMigrationThreshold,
address _treasury,
address _dexTreasury,
address _solidlyRouter,
address _signer
) Ownable(msg.sender) {
_setConfig(
_totalSupply,
_virtualTokenReserves,
_virtualCollateralReserves,
_feeBasisPoints,
_dexFeeBasisPoints,
_migrationFeeFixed,
_poolCreationFee,
_mcUpperLimit,
_mcLowerLimit,
_tokensMigrationThreshold,
_treasury,
_dexTreasury,
_signer
);
ROUTER_02 = _solidlyRouter;
}
function setConfig(
uint256 _totalSupply,
uint256 _virtualTokenReserves,
uint256 _virtualCollateralReserves,
uint256 _feeBasisPoints,
uint256 _dexFeeBasisPoints,
uint256 _migrationFeeFixed,
uint256 _poolCreationFee,
uint256 _mcUpperLimit,
uint256 _mcLowerLimit,
uint256 _tokensMigrationThreshold,
address _treasury,
address _dexTreasury,
address _signer
) external onlyOwner {
_setConfig(
_totalSupply,
_virtualTokenReserves,
_virtualCollateralReserves,
_feeBasisPoints,
_dexFeeBasisPoints,
_migrationFeeFixed,
_poolCreationFee,
_mcUpperLimit,
_mcLowerLimit,
_tokensMigrationThreshold,
_treasury,
_dexTreasury,
_signer
);
}
function createMoonshotToken(
string memory _name,
string memory _symbol,
uint256 _nonce,
bytes memory _signature
) external returns (address) {
_checkSignatureAndStore(_name, _symbol, _nonce, _signature);
MoonshotToken token = new MoonshotToken(
IMoonshotToken.ConstructorParams(
_name,
_symbol,
msg.sender, // creator
totalSupply,
virtualTokenReserves,
virtualCollateralReserves,
feeBasisPoints,
dexFeeBasisPoints,
migrationFeeFixed,
poolCreationFee,
mcLowerLimit,
mcUpperLimit,
tokensMigrationThreshold,
treasury,
ROUTER_02,
dexTreasury
)
);
moonshotTokens.push(address(token));
emit NewMoonshotToken(address(token), msg.sender, _signature);
return address(token);
}
function createMoonshotTokenAndBuy(
string memory _name,
string memory _symbol,
uint256 _nonce,
uint256 _tokenAmountMin,
bytes memory _signature
) external payable nonReentrant returns (address) {
_checkSignatureAndStore(_name, _symbol, _nonce, _signature);
MoonshotToken token = new MoonshotToken(
IMoonshotToken.ConstructorParams(
_name,
_symbol,
msg.sender, // creator
totalSupply,
virtualTokenReserves,
virtualCollateralReserves,
feeBasisPoints,
dexFeeBasisPoints,
migrationFeeFixed,
poolCreationFee,
mcLowerLimit,
mcUpperLimit,
tokensMigrationThreshold,
treasury,
ROUTER_02,
dexTreasury
)
);
(uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee) = token.buyExactIn{value: msg.value}(
_tokenAmountMin
);
uint256 tokenAmount = token.balanceOf(address(this));
token.transfer(msg.sender, tokenAmount);
moonshotTokens.push(address(token));
emit NewMoonshotTokenAndBuy(
address(token),
msg.sender,
_signature,
tokenAmount,
collateralToPayWithFee,
helioFee,
dexFee,
token.getCurveProgressBps()
);
return address(token);
}
function buyExactOut(
address _token,
uint256 _tokenAmount,
uint256 _maxCollateralAmount
) external payable nonReentrant {
(uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee) = IMoonshotToken(_token).buyExactOut{
value: msg.value
}(_tokenAmount, _maxCollateralAmount);
IMoonshotToken(_token).transfer(msg.sender, _tokenAmount);
uint256 refund = address(this).balance;
if (refund > 0) {
(bool sent, ) = msg.sender.call{value: refund}("");
if (!sent) revert FailedToSendETH();
}
emit BuyExactOut(
msg.sender,
_token,
_tokenAmount,
MoonshotToken(_token).totalSupply() - IMoonshotToken(_token).balanceOf(address(_token)),
collateralToPayWithFee,
refund,
helioFee,
dexFee,
IMoonshotToken(_token).getCurveProgressBps()
);
if (MoonshotToken(_token).tradingStopped()) {
readyForMigration[_token] = true;
emit MarketcapReached(_token);
}
}
function buyExactIn(address _token, uint256 _amountOutMin) external payable nonReentrant {
(uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee) = IMoonshotToken(_token).buyExactIn{
value: msg.value
}(_amountOutMin);
uint256 tokensOut = IMoonshotToken(_token).balanceOf(address(this));
IMoonshotToken(_token).transfer(msg.sender, tokensOut);
uint256 refund = address(this).balance;
if (refund > 0) {
(bool sent, ) = msg.sender.call{value: refund}("");
if (!sent) revert FailedToSendETH();
}
emit BuyExactIn(
msg.sender,
_token,
tokensOut,
MoonshotToken(_token).totalSupply() - IMoonshotToken(_token).balanceOf(address(_token)),
collateralToPayWithFee,
helioFee,
dexFee,
IMoonshotToken(_token).getCurveProgressBps()
);
if (MoonshotToken(_token).tradingStopped()) {
readyForMigration[_token] = true;
emit MarketcapReached(_token);
}
}
function sellExactIn(address _token, uint256 _tokenAmount, uint256 _amountCollateralMin) external nonReentrant {
MoonshotToken(_token).transferFrom(msg.sender, address(this), _tokenAmount);
(uint256 collateralToReceiveMinusFee, uint256 helioFee, uint256 dexFee) = MoonshotToken(_token).sellExactIn(
_tokenAmount,
_amountCollateralMin
);
(bool sent, ) = msg.sender.call{value: address(this).balance}("");
if (!sent) revert FailedToSendETH();
emit SellExactIn(
msg.sender,
_token,
_tokenAmount,
MoonshotToken(_token).totalSupply() - MoonshotToken(_token).balanceOf(address(_token)),
collateralToReceiveMinusFee,
helioFee,
dexFee,
IMoonshotToken(_token).getCurveProgressBps()
);
}
function sellExactOut(address _token, uint256 _tokenAmountMax, uint256 _amountCollateral) external nonReentrant {
MoonshotToken(_token).transferFrom(msg.sender, address(this), _tokenAmountMax);
(uint256 collateralToReceiveMinusFee, uint256 tokensOut, uint256 helioFee, uint256 dexFee) = MoonshotToken(
_token
).sellExactOut(_tokenAmountMax, _amountCollateral);
(bool sent, ) = msg.sender.call{value: address(this).balance}("");
if (!sent) revert FailedToSendETH();
emit SellExactOut(
msg.sender,
_token,
tokensOut,
MoonshotToken(_token).totalSupply() - MoonshotToken(_token).balanceOf(address(_token)),
collateralToReceiveMinusFee,
helioFee,
dexFee,
IMoonshotToken(_token).getCurveProgressBps()
);
}
function migrate(address _token) external {
if (!readyForMigration[_token]) revert NotReadyForMigration();
(uint256 tokensToMigrate, uint256 tokensToBurn, uint256 collateralAmount, address pair) = MoonshotToken(_token)
.migrate();
emit Migrated(
_token,
tokensToMigrate,
tokensToBurn,
collateralAmount,
MoonshotToken(_token).fixedMigrationFee() + MoonshotToken(_token).poolCreationFee(),
pair
);
}
function _setConfig(
uint256 _totalSupply,
uint256 _virtualTokenReserves,
uint256 _virtualCollateralReserves,
uint256 _feeBasisPoints,
uint256 _dexFeeBasisPoints,
uint256 _migrationFeeFixed,
uint256 _poolCreationFee,
uint256 _mcUpperLimit,
uint256 _mcLowerLimit,
uint256 _tokensMigrationThreshold,
address _treasury,
address _dexTreasury,
address _signer
) internal {
if (_totalSupply == 0) revert TotalSupplyZeroValue();
if (_virtualTokenReserves == 0) revert VirtualTokenReservesZeroValue();
if (_virtualCollateralReserves == 0) revert VirtualCollateralReservesZeroValue();
if (_mcLowerLimit == 0) revert McUpperLimitZeroValue();
if (_mcUpperLimit == 0) revert McLowerLimitZeroValue();
if (_tokensMigrationThreshold == 0) revert TokensMigrationThresholdZeroValue();
if (_treasury == address(0)) revert TreasuryZeroValue();
if (_dexTreasury == address(0)) revert DexTreasuryZeroValue();
if (_signer == address(0)) revert SignerZeroValue();
if (_mcLowerLimit >= _mcUpperLimit) revert McLowerLimitGreaterThanUpperLimit();
if (dexFeeBasisPoints >= 10_000) revert FeeBPSCheckFailed();
if (feeBasisPoints >= MAX_BPS) revert FeeBPSCheckFailed();
totalSupply = _totalSupply;
virtualTokenReserves = _virtualTokenReserves;
virtualCollateralReserves = _virtualCollateralReserves;
feeBasisPoints = _feeBasisPoints;
dexFeeBasisPoints = _dexFeeBasisPoints;
migrationFeeFixed = _migrationFeeFixed;
poolCreationFee = _poolCreationFee;
mcUpperLimit = _mcUpperLimit;
mcLowerLimit = _mcLowerLimit;
tokensMigrationThreshold = _tokensMigrationThreshold;
treasury = _treasury;
dexTreasury = _dexTreasury;
signer = _signer;
emit SetConfig(
totalSupply,
virtualTokenReserves,
virtualCollateralReserves,
feeBasisPoints,
dexFeeBasisPoints,
migrationFeeFixed,
poolCreationFee,
mcUpperLimit,
mcLowerLimit,
tokensMigrationThreshold,
treasury,
dexTreasury,
signer
);
}
function _checkSignatureAndStore(
string memory _name,
string memory _symbol,
uint256 _nonce,
bytes memory _signature
) internal {
if (usedSignatures[keccak256(_signature)]) revert SignatureIsUsed();
bytes32 message = keccak256(abi.encodePacked(_name, _symbol, _nonce, address(this), block.chainid, msg.sender));
if (!SignatureChecker.isValidSignatureNow(signer, MessageHashUtils.toEthSignedMessageHash(message), _signature))
revert InvalidSignature();
usedSignatures[keccak256(_signature)] = true;
}
receive() external payable {}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {IRouter02} from "./interfaces/IRouter02.sol";
import {IBaseV1Factory} from "./interfaces/IBaseV1Factory.sol";
import {IMoonshotToken} from "./interfaces/IMoonshotToken.sol";
contract MoonshotToken is ERC20Burnable, IMoonshotToken, ReentrancyGuard {
CurveType public constant curveType = CurveType.ConstantProductV1;
uint256 public initalTokenSupply;
uint256 public virtualTokenReserves;
uint256 public virtualCollateralReserves;
uint256 public immutable virtualCollateralReservesInitial;
uint256 public immutable feeBPS;
uint256 public immutable dexFeeBPS;
uint256 public immutable mcLowerLimit;
uint256 public immutable mcUpperLimit;
uint256 public immutable tokensMigrationThreshold;
uint256 public immutable fixedMigrationFee;
uint256 public immutable poolCreationFee;
address public immutable creator;
address public immutable treasury;
address public immutable dexTreasury;
address public immutable factory;
bool public tradingStopped;
bool public sendingToPairNotAllowed = true;
uint256 public constant MAX_BPS = 10_000;
IRouter02 public immutable solidlyRouter;
modifier buyChecks() {
if (tradingStopped) revert TradingStopped();
_;
_checkMcLower();
_checkMcUpperLimit();
}
modifier sellChecks() {
if (tradingStopped) revert TradingStopped();
_;
}
modifier onlyFactory() {
if (msg.sender != factory) revert OnlyFactory();
_;
}
constructor(ConstructorParams memory _params) ERC20(_params.name, _params.symbol) {
_mint(address(this), _params.totalSupply);
initalTokenSupply = _params.totalSupply;
virtualCollateralReserves = _params.virtualCollateralReserves;
virtualCollateralReservesInitial = _params.virtualCollateralReserves;
virtualTokenReserves = _params.virtualTokenReserves;
creator = _params.creator;
feeBPS = _params.feeBasisPoints;
dexFeeBPS = _params.dexFeeBasisPoints;
treasury = _params.treasury;
dexTreasury = _params.dexTreasury;
fixedMigrationFee = _params.migrationFeeFixed;
poolCreationFee = _params.poolCreationFee;
mcLowerLimit = _params.mcLowerLimit;
mcUpperLimit = _params.mcUpperLimit;
tokensMigrationThreshold = _params.tokensMigrationThreshold;
solidlyRouter = IRouter02(_params.solidlyRouter);
factory = msg.sender;
}
/**
* @dev Buys tokenAmount of tokens for eth, refunding excess eth
*
* @param _tokenAmount - amount of tokens to buy
* @param _maxCollateralAmount - maximum amount of collateral a caller is willing to spend
*/
function buyExactOut(
uint256 _tokenAmount,
uint256 _maxCollateralAmount
)
external
payable
onlyFactory
buyChecks
returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee)
{
if (balanceOf(address(this)) <= _tokenAmount) revert InsufficientTokenReserves();
uint256 collateralToSpend = (_tokenAmount * virtualCollateralReserves) / (virtualTokenReserves - _tokenAmount);
(helioFee, dexFee) = _calculateFee(collateralToSpend);
collateralToPayWithFee = collateralToSpend + helioFee + dexFee;
if (collateralToPayWithFee > _maxCollateralAmount) revert SlippageCheckFailed();
_transferCollateral(treasury, helioFee);
_transferCollateral(dexTreasury, dexFee);
virtualTokenReserves -= _tokenAmount;
virtualCollateralReserves += collateralToSpend;
uint256 refund;
if (msg.value > collateralToPayWithFee) {
// refund the user
refund = msg.value - collateralToPayWithFee;
_transferCollateral(msg.sender, refund);
} else if (msg.value < collateralToPayWithFee) {
revert NotEnoughtETHToBuyTokens();
}
_transfer(address(this), msg.sender, _tokenAmount);
}
/**
* @dev Buys tokens specifing minimal amount of tokens a caller gets
*
* @param _amountOutMin - minimal amount of tokens a caller will get
*/
function buyExactIn(
uint256 _amountOutMin
)
external
payable
onlyFactory
buyChecks
returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee)
{
if (balanceOf(address(this)) <= _amountOutMin) revert InsufficientTokenReserves();
collateralToPayWithFee = msg.value;
(helioFee, dexFee) = _calculateFee(collateralToPayWithFee);
uint256 collateralToSpendMinusFee = collateralToPayWithFee - helioFee - dexFee;
_transferCollateral(treasury, helioFee);
_transferCollateral(dexTreasury, dexFee);
uint256 tokensOut = (collateralToSpendMinusFee * virtualTokenReserves) /
(virtualCollateralReserves + collateralToSpendMinusFee);
if (tokensOut < _amountOutMin) revert SlippageCheckFailed();
virtualTokenReserves -= tokensOut;
virtualCollateralReserves += collateralToSpendMinusFee;
_transfer(address(this), msg.sender, tokensOut);
}
/**
* @dev Sells given amount of tokens for eth
*
* @param _tokenAmount - amount of tokens a caller wants to sell
* @param _amountCollateralMin - minimum amount of collateral a seller will get
*/
function sellExactIn(
uint256 _tokenAmount,
uint256 _amountCollateralMin
)
external
payable
onlyFactory
sellChecks
returns (uint256 collateralToReceiveMinusFee, uint256 helioFee, uint256 dexFee)
{
uint256 collaterallToReceive = (_tokenAmount * virtualCollateralReserves) /
(virtualTokenReserves + _tokenAmount);
(helioFee, dexFee) = _calculateFee(collaterallToReceive);
collateralToReceiveMinusFee = collaterallToReceive - helioFee - dexFee;
_transferCollateral(treasury, helioFee);
_transferCollateral(dexTreasury, dexFee);
if (collateralToReceiveMinusFee < _amountCollateralMin) revert SlippageCheckFailed();
virtualTokenReserves += _tokenAmount;
virtualCollateralReserves -= collaterallToReceive;
_transferCollateral(msg.sender, collateralToReceiveMinusFee);
_transfer(msg.sender, address(this), _tokenAmount);
}
/**
* @dev Sells given amount of tokens for eth
*
* @param _tokenAmountMax - max amount of tokens a caller wants to sell
*/
function sellExactOut(
uint256 _tokenAmountMax,
uint256 _amountCollateral
)
external
payable
onlyFactory
sellChecks
returns (uint256 collateralToReceiveMinusFee, uint256 tokensOut, uint256 helioFee, uint256 dexFee)
{
(helioFee, dexFee) = _calculateFee(_amountCollateral);
collateralToReceiveMinusFee = _amountCollateral - helioFee - dexFee;
_transferCollateral(treasury, helioFee);
_transferCollateral(dexTreasury, dexFee);
tokensOut = (_amountCollateral * virtualTokenReserves) / (virtualCollateralReserves - _amountCollateral);
if (tokensOut > _tokenAmountMax) revert SlippageCheckFailed();
_transfer(msg.sender, address(this), tokensOut);
virtualTokenReserves += tokensOut;
virtualCollateralReserves -= _amountCollateral;
_transferCollateral(msg.sender, collateralToReceiveMinusFee);
}
/**
* @dev Calculates amountOut for a given amountIn
*
* @param _amountIn - amount in which will be transfered to the contract
* @param _reserveIn - reserve in
* @param _reserveOut - reserve out
* @param _paymentTokenIsIn - if token in is a collateral token
*/
function getAmountOutAndFee(
uint256 _amountIn,
uint256 _reserveIn,
uint256 _reserveOut,
bool _paymentTokenIsIn
) external view returns (uint256 amountOut, uint256 fee) {
if (_paymentTokenIsIn) {
(uint256 helioFee, uint256 dexFee) = _calculateFee(_amountIn);
fee = helioFee + dexFee;
amountOut = (_amountIn * _reserveOut) / (_reserveIn + _amountIn);
} else {
amountOut = (_amountIn * _reserveOut) / (_reserveIn + _amountIn);
(uint256 helioFee, uint256 dexFee) = _calculateFee(amountOut);
fee = helioFee + dexFee;
}
}
/**
* @dev Calculates amountIn for a given amountOut
*
* @param _amountOut - amount out which will be transfered from the contract
* @param _reserveIn - reserve in
* @param _reserveOut - reserve out
* @param _paymentTokenIsOut - if token out is a payment token
*/
function getAmountInAndFee(
uint256 _amountOut,
uint256 _reserveIn,
uint256 _reserveOut,
bool _paymentTokenIsOut
) external view returns (uint256 amountIn, uint256 fee) {
if (_paymentTokenIsOut) {
(uint256 helioFee, uint256 dexFee) = _calculateFee(_amountOut);
fee = helioFee + dexFee;
amountIn = (_amountOut * _reserveIn) / (_reserveOut - _amountOut);
} else {
amountIn = (_amountOut * _reserveIn) / (_reserveOut - _amountOut);
(uint256 helioFee, uint256 dexFee) = _calculateFee(amountIn);
fee = helioFee + dexFee;
}
}
/**
* @dev migrates tokens and collateral to uniswap-v2 and burns LP tokens
*/
function migrate()
external
onlyFactory
returns (uint256 tokensToMigrate, uint256 tokensToBurn, uint256 collateralAmount, address pair)
{
sendingToPairNotAllowed = false;
if (IBaseV1Factory(solidlyRouter.factory()).getPair(address(this), solidlyRouter.weth(), false) == address(0)) {
IBaseV1Factory(solidlyRouter.factory()).createPair(address(this), solidlyRouter.weth(), false);
}
pair = IBaseV1Factory(solidlyRouter.factory()).getPair(address(this), solidlyRouter.weth(), false);
if (pair == address(0)) revert PairNotCreated();
uint256 tokensRemaining = balanceOf(address(this));
this.approve(address(solidlyRouter), tokensRemaining);
tokensToMigrate = _tokensToMigrate();
tokensToBurn = tokensRemaining - tokensToMigrate;
(uint256 treasuryFee, uint256 dexFee) = _splitFee(fixedMigrationFee);
_transferCollateral(treasury, treasuryFee + poolCreationFee);
_transferCollateral(dexTreasury, dexFee);
_burn(address(this), tokensToBurn);
collateralAmount =
virtualCollateralReserves -
virtualCollateralReservesInitial -
treasuryFee -
dexFee -
poolCreationFee;
(, , uint256 liquidity) = solidlyRouter.addLiquidityETH{value: collateralAmount}(
address(this),
false,
tokensToMigrate,
tokensToMigrate,
collateralAmount,
address(this),
block.timestamp + 10
);
if (address(this).balance > 0) {
_transferCollateral(treasury, address(this).balance);
}
IERC20(pair).transfer(address(0), liquidity);
}
function getMarketCap() public view returns (uint256) {
uint256 mc = (virtualCollateralReserves * 10 ** 18 * totalSupply()) / virtualTokenReserves;
return mc / 10 ** 18;
}
function getCurveProgressBps() external view returns (uint256) {
uint256 progress = ((initalTokenSupply - balanceOf(address(this))) * MAX_BPS) / tokensMigrationThreshold;
return progress < 100 ? 100 : (progress > MAX_BPS ? MAX_BPS : progress);
}
function transfer(address _to, uint256 _value) public override(ERC20, IERC20) returns (bool) {
if (sendingToPairNotAllowed) {
if (IBaseV1Factory(solidlyRouter.factory()).isPair(_to)) revert SendingToPairIsNotAllowedBeforeMigration();
}
return super.transfer(_to, _value);
}
function transferFrom(address from, address to, uint256 amount) public override(ERC20, IERC20) returns (bool) {
if (sendingToPairNotAllowed) {
if (IBaseV1Factory(solidlyRouter.factory()).isPair(to)) revert SendingToPairIsNotAllowedBeforeMigration();
}
return super.transferFrom(from, to, amount);
}
function _tokensToMigrate() internal view returns (uint256) {
uint256 collateralDeductedFee = address(this).balance - fixedMigrationFee - poolCreationFee;
return (virtualTokenReserves * collateralDeductedFee) / virtualCollateralReserves;
}
function _calculateFee(uint256 _amount) internal view returns (uint256 treasuryFee, uint256 dexFee) {
treasuryFee = (_amount * feeBPS) / MAX_BPS;
dexFee = (treasuryFee * dexFeeBPS) / MAX_BPS;
treasuryFee -= dexFee;
}
function _splitFee(uint256 _feeAmount) internal view returns (uint256 treasuryFee, uint256 dexFee) {
dexFee = (_feeAmount * dexFeeBPS) / MAX_BPS;
treasuryFee = _feeAmount - dexFee;
}
function _transferCollateral(address _to, uint256 _amount) internal {
(bool sent, ) = _to.call{value: _amount}("");
if (!sent) revert FailedToSendETH();
}
function _checkMcUpperLimit() internal view {
uint256 mc = getMarketCap();
if (mc > mcUpperLimit) revert MarketcapThresholdReached();
}
function _checkMcLower() internal {
uint256 mc = getMarketCap();
if (mc > mcLowerLimit) {
tradingStopped = true;
}
}
}