Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/Context.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow, so we distribute
return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
pragma solidity ^0.6.0;
interface IBasisAsset {
function mint(address recipient, uint256 amount) external returns (bool);
function burn(uint256 amount) external;
function burnFrom(address from, uint256 amount) external;
function isOperator() external returns (bool);
function operator() external view returns (address);
function transferOperator(address newOperator_) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
interface IMasonry {
function balanceOf(address _mason) external view returns (uint256);
function earned(address _mason) external view returns (uint256);
function canWithdraw(address _mason) external view returns (bool);
function canClaimReward(address _mason) external view returns (bool);
function epoch() external view returns (uint256);
function nextEpochPoint() external view returns (uint256);
function getTombPrice() external view returns (uint256);
function setOperator(address _operator) external;
function setLockUp(uint256 _withdrawLockupEpochs, uint256 _rewardLockupEpochs) external;
function stake(uint256 _amount) external;
function withdraw(uint256 _amount) external;
function exit() external;
function claimReward() external;
function allocateSeigniorage(uint256 _amount) external;
function governanceRecoverUnsupported(address _token, uint256 _amount, address _to) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
interface IOracle {
function update() external;
function consult(address _token, uint256 _amountIn) external view returns (uint144 amountOut);
function twap(address _token, uint256 _amountIn) external view returns (uint144 _amountOut);
}
pragma solidity ^0.6.0;
library Babylonian {
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
// else z = 0
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/GSN/Context.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
contract Operator is Context, Ownable {
address private _operator;
event OperatorTransferred(address indexed previousOperator, address indexed newOperator);
constructor() internal {
_operator = _msgSender();
emit OperatorTransferred(address(0), _operator);
}
function operator() public view returns (address) {
return _operator;
}
modifier onlyOperator() {
require(_operator == msg.sender, "operator: caller is not the operator");
_;
}
function isOperator() public view returns (bool) {
return _msgSender() == _operator;
}
function transferOperator(address newOperator_) public onlyOwner {
_transferOperator(newOperator_);
}
function _transferOperator(address newOperator_) internal {
require(newOperator_ != address(0), "operator: zero address given for new operator");
emit OperatorTransferred(address(0), newOperator_);
_operator = newOperator_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
import "@openzeppelin/contracts/math/Math.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "./lib/Babylonian.sol";
import "./owner/Operator.sol";
import "./utils/ContractGuard.sol";
import "./interfaces/IBasisAsset.sol";
import "./interfaces/IOracle.sol";
import "./interfaces/IMasonry.sol";
/*
______ __ _______
/_ __/___ ____ ___ / /_ / ____(_)___ ____ _____ ________
/ / / __ \/ __ `__ \/ __ \ / /_ / / __ \/ __ `/ __ \/ ___/ _ \
/ / / /_/ / / / / / / /_/ / / __/ / / / / / /_/ / / / / /__/ __/
/_/ \____/_/ /_/ /_/_.___/ /_/ /_/_/ /_/\__,_/_/ /_/\___/\___/
http://tomb.finance
*/
contract Treasury is ContractGuard {
using SafeERC20 for IERC20;
using Address for address;
using SafeMath for uint256;
/* ========= CONSTANT VARIABLES ======== */
uint256 public constant PERIOD = 6 hours;
/* ========== STATE VARIABLES ========== */
// governance
address public operator;
// flags
bool public initialized = false;
// epoch
uint256 public startTime;
uint256 public epoch = 0;
uint256 public epochSupplyContractionLeft = 0;
// exclusions from total supply
address[] public excludedFromTotalSupply = [
address(0x9A896d3c54D7e45B558BD5fFf26bF1E8C031F93b), // TombGenesisPool
address(0xa7b9123f4b15fE0fF01F469ff5Eab2b41296dC0E), // new TombRewardPool
address(0xA7B16703470055881e7EE093e9b0bF537f29CD4d) // old TombRewardPool
];
// core components
address public tomb;
address public tbond;
address public tshare;
address public masonry;
address public tombOracle;
// price
uint256 public tombPriceOne;
uint256 public tombPriceCeiling;
uint256 public seigniorageSaved;
uint256[] public supplyTiers;
uint256[] public maxExpansionTiers;
uint256 public maxSupplyExpansionPercent;
uint256 public bondDepletionFloorPercent;
uint256 public seigniorageExpansionFloorPercent;
uint256 public maxSupplyContractionPercent;
uint256 public maxDebtRatioPercent;
// 28 first epochs (1 week) with 4.5% expansion regardless of TOMB price
uint256 public bootstrapEpochs;
uint256 public bootstrapSupplyExpansionPercent;
/* =================== Added variables =================== */
uint256 public previousEpochTombPrice;
uint256 public maxDiscountRate; // when purchasing bond
uint256 public maxPremiumRate; // when redeeming bond
uint256 public discountPercent;
uint256 public premiumThreshold;
uint256 public premiumPercent;
uint256 public mintingFactorForPayingDebt; // print extra TOMB during debt phase
address public daoFund;
uint256 public daoFundSharedPercent;
address public devFund;
uint256 public devFundSharedPercent;
/* =================== Events =================== */
event Initialized(address indexed executor, uint256 at);
event BurnedBonds(address indexed from, uint256 bondAmount);
event RedeemedBonds(address indexed from, uint256 tombAmount, uint256 bondAmount);
event BoughtBonds(address indexed from, uint256 tombAmount, uint256 bondAmount);
event TreasuryFunded(uint256 timestamp, uint256 seigniorage);
event MasonryFunded(uint256 timestamp, uint256 seigniorage);
event DaoFundFunded(uint256 timestamp, uint256 seigniorage);
event DevFundFunded(uint256 timestamp, uint256 seigniorage);
/* =================== Modifier =================== */
modifier onlyOperator() {
require(operator == msg.sender, "Treasury: caller is not the operator");
_;
}
modifier checkCondition {
require(now >= startTime, "Treasury: not started yet");
_;
}
modifier checkEpoch {
require(now >= nextEpochPoint(), "Treasury: not opened yet");
_;
epoch = epoch.add(1);
epochSupplyContractionLeft = (getTombPrice() > tombPriceCeiling) ? 0 : getTombCirculatingSupply().mul(maxSupplyContractionPercent).div(10000);
}
modifier checkOperator {
require(
IBasisAsset(tomb).operator() == address(this) &&
IBasisAsset(tbond).operator() == address(this) &&
IBasisAsset(tshare).operator() == address(this) &&
Operator(masonry).operator() == address(this),
"Treasury: need more permission"
);
_;
}
modifier notInitialized {
require(!initialized, "Treasury: already initialized");
_;
}
/* ========== VIEW FUNCTIONS ========== */
function isInitialized() public view returns (bool) {
return initialized;
}
// epoch
function nextEpochPoint() public view returns (uint256) {
return startTime.add(epoch.mul(PERIOD));
}
// oracle
function getTombPrice() public view returns (uint256 tombPrice) {
try IOracle(tombOracle).consult(tomb, 1e18) returns (uint144 price) {
return uint256(price);
} catch {
revert("Treasury: failed to consult TOMB price from the oracle");
}
}
function getTombUpdatedPrice() public view returns (uint256 _tombPrice) {
try IOracle(tombOracle).twap(tomb, 1e18) returns (uint144 price) {
return uint256(price);
} catch {
revert("Treasury: failed to consult TOMB price from the oracle");
}
}
// budget
function getReserve() public view returns (uint256) {
return seigniorageSaved;
}
function getBurnableTombLeft() public view returns (uint256 _burnableTombLeft) {
uint256 _tombPrice = getTombPrice();
if (_tombPrice <= tombPriceOne) {
uint256 _tombSupply = getTombCirculatingSupply();
uint256 _bondMaxSupply = _tombSupply.mul(maxDebtRatioPercent).div(10000);
uint256 _bondSupply = IERC20(tbond).totalSupply();
if (_bondMaxSupply > _bondSupply) {
uint256 _maxMintableBond = _bondMaxSupply.sub(_bondSupply);
uint256 _maxBurnableTomb = _maxMintableBond.mul(_tombPrice).div(1e18);
_burnableTombLeft = Math.min(epochSupplyContractionLeft, _maxBurnableTomb);
}
}
}
function getRedeemableBonds() public view returns (uint256 _redeemableBonds) {
uint256 _tombPrice = getTombPrice();
if (_tombPrice > tombPriceCeiling) {
uint256 _totalTomb = IERC20(tomb).balanceOf(address(this));
uint256 _rate = getBondPremiumRate();
if (_rate > 0) {
_redeemableBonds = _totalTomb.mul(1e18).div(_rate);
}
}
}
function getBondDiscountRate() public view returns (uint256 _rate) {
uint256 _tombPrice = getTombPrice();
if (_tombPrice <= tombPriceOne) {
if (discountPercent == 0) {
// no discount
_rate = tombPriceOne;
} else {
uint256 _bondAmount = tombPriceOne.mul(1e18).div(_tombPrice); // to burn 1 TOMB
uint256 _discountAmount = _bondAmount.sub(tombPriceOne).mul(discountPercent).div(10000);
_rate = tombPriceOne.add(_discountAmount);
if (maxDiscountRate > 0 && _rate > maxDiscountRate) {
_rate = maxDiscountRate;
}
}
}
}
function getBondPremiumRate() public view returns (uint256 _rate) {
uint256 _tombPrice = getTombPrice();
if (_tombPrice > tombPriceCeiling) {
uint256 _tombPricePremiumThreshold = tombPriceOne.mul(premiumThreshold).div(100);
if (_tombPrice >= _tombPricePremiumThreshold) {
//Price > 1.10
uint256 _premiumAmount = _tombPrice.sub(tombPriceOne).mul(premiumPercent).div(10000);
_rate = tombPriceOne.add(_premiumAmount);
if (maxPremiumRate > 0 && _rate > maxPremiumRate) {
_rate = maxPremiumRate;
}
} else {
// no premium bonus
_rate = tombPriceOne;
}
}
}
/* ========== GOVERNANCE ========== */
function initialize(
address _tomb,
address _tbond,
address _tshare,
address _tombOracle,
address _masonry,
uint256 _startTime
) public notInitialized {
tomb = _tomb;
tbond = _tbond;
tshare = _tshare;
tombOracle = _tombOracle;
masonry = _masonry;
startTime = _startTime;
tombPriceOne = 10**18;
tombPriceCeiling = tombPriceOne.mul(101).div(100);
// Dynamic max expansion percent
supplyTiers = [0 ether, 500000 ether, 1000000 ether, 1500000 ether, 2000000 ether, 5000000 ether, 10000000 ether, 20000000 ether, 50000000 ether];
maxExpansionTiers = [450, 400, 350, 300, 250, 200, 150, 125, 100];
maxSupplyExpansionPercent = 400; // Upto 4.0% supply for expansion
bondDepletionFloorPercent = 10000; // 100% of Bond supply for depletion floor
seigniorageExpansionFloorPercent = 3500; // At least 35% of expansion reserved for masonry
maxSupplyContractionPercent = 300; // Upto 3.0% supply for contraction (to burn TOMB and mint tBOND)
maxDebtRatioPercent = 3500; // Upto 35% supply of tBOND to purchase
premiumThreshold = 110;
premiumPercent = 7000;
// First 28 epochs with 4.5% expansion
bootstrapEpochs = 28;
bootstrapSupplyExpansionPercent = 450;
// set seigniorageSaved to it's balance
seigniorageSaved = IERC20(tomb).balanceOf(address(this));
initialized = true;
operator = msg.sender;
emit Initialized(msg.sender, block.number);
}
function setOperator(address _operator) external onlyOperator {
operator = _operator;
}
function setMasonry(address _masonry) external onlyOperator {
masonry = _masonry;
}
function setTombOracle(address _tombOracle) external onlyOperator {
tombOracle = _tombOracle;
}
function setTombPriceCeiling(uint256 _tombPriceCeiling) external onlyOperator {
require(_tombPriceCeiling >= tombPriceOne && _tombPriceCeiling <= tombPriceOne.mul(120).div(100), "out of range"); // [$1.0, $1.2]
tombPriceCeiling = _tombPriceCeiling;
}
function setMaxSupplyExpansionPercents(uint256 _maxSupplyExpansionPercent) external onlyOperator {
require(_maxSupplyExpansionPercent >= 10 && _maxSupplyExpansionPercent <= 1000, "_maxSupplyExpansionPercent: out of range"); // [0.1%, 10%]
maxSupplyExpansionPercent = _maxSupplyExpansionPercent;
}
function setSupplyTiersEntry(uint8 _index, uint256 _value) external onlyOperator returns (bool) {
require(_index >= 0, "Index has to be higher than 0");
require(_index < 9, "Index has to be lower than count of tiers");
if (_index > 0) {
require(_value > supplyTiers[_index - 1]);
}
if (_index < 8) {
require(_value < supplyTiers[_index + 1]);
}
supplyTiers[_index] = _value;
return true;
}
function setMaxExpansionTiersEntry(uint8 _index, uint256 _value) external onlyOperator returns (bool) {
require(_index >= 0, "Index has to be higher than 0");
require(_index < 9, "Index has to be lower than count of tiers");
require(_value >= 10 && _value <= 1000, "_value: out of range"); // [0.1%, 10%]
maxExpansionTiers[_index] = _value;
return true;
}
function setBondDepletionFloorPercent(uint256 _bondDepletionFloorPercent) external onlyOperator {
require(_bondDepletionFloorPercent >= 500 && _bondDepletionFloorPercent <= 10000, "out of range"); // [5%, 100%]
bondDepletionFloorPercent = _bondDepletionFloorPercent;
}
function setMaxSupplyContractionPercent(uint256 _maxSupplyContractionPercent) external onlyOperator {
require(_maxSupplyContractionPercent >= 100 && _maxSupplyContractionPercent <= 1500, "out of range"); // [0.1%, 15%]
maxSupplyContractionPercent = _maxSupplyContractionPercent;
}
function setMaxDebtRatioPercent(uint256 _maxDebtRatioPercent) external onlyOperator {
require(_maxDebtRatioPercent >= 1000 && _maxDebtRatioPercent <= 10000, "out of range"); // [10%, 100%]
maxDebtRatioPercent = _maxDebtRatioPercent;
}
function setBootstrap(uint256 _bootstrapEpochs, uint256 _bootstrapSupplyExpansionPercent) external onlyOperator {
require(_bootstrapEpochs <= 120, "_bootstrapEpochs: out of range"); // <= 1 month
require(_bootstrapSupplyExpansionPercent >= 100 && _bootstrapSupplyExpansionPercent <= 1000, "_bootstrapSupplyExpansionPercent: out of range"); // [1%, 10%]
bootstrapEpochs = _bootstrapEpochs;
bootstrapSupplyExpansionPercent = _bootstrapSupplyExpansionPercent;
}
function setExtraFunds(
address _daoFund,
uint256 _daoFundSharedPercent,
address _devFund,
uint256 _devFundSharedPercent
) external onlyOperator {
require(_daoFund != address(0), "zero");
require(_daoFundSharedPercent <= 3000, "out of range"); // <= 30%
require(_devFund != address(0), "zero");
require(_devFundSharedPercent <= 1000, "out of range"); // <= 10%
daoFund = _daoFund;
daoFundSharedPercent = _daoFundSharedPercent;
devFund = _devFund;
devFundSharedPercent = _devFundSharedPercent;
}
function setMaxDiscountRate(uint256 _maxDiscountRate) external onlyOperator {
maxDiscountRate = _maxDiscountRate;
}
function setMaxPremiumRate(uint256 _maxPremiumRate) external onlyOperator {
maxPremiumRate = _maxPremiumRate;
}
function setDiscountPercent(uint256 _discountPercent) external onlyOperator {
require(_discountPercent <= 20000, "_discountPercent is over 200%");
discountPercent = _discountPercent;
}
function setPremiumThreshold(uint256 _premiumThreshold) external onlyOperator {
require(_premiumThreshold >= tombPriceCeiling, "_premiumThreshold exceeds tombPriceCeiling");
require(_premiumThreshold <= 150, "_premiumThreshold is higher than 1.5");
premiumThreshold = _premiumThreshold;
}
function setPremiumPercent(uint256 _premiumPercent) external onlyOperator {
require(_premiumPercent <= 20000, "_premiumPercent is over 200%");
premiumPercent = _premiumPercent;
}
function setMintingFactorForPayingDebt(uint256 _mintingFactorForPayingDebt) external onlyOperator {
require(_mintingFactorForPayingDebt >= 10000 && _mintingFactorForPayingDebt <= 20000, "_mintingFactorForPayingDebt: out of range"); // [100%, 200%]
mintingFactorForPayingDebt = _mintingFactorForPayingDebt;
}
/* ========== MUTABLE FUNCTIONS ========== */
function _updateTombPrice() internal {
try IOracle(tombOracle).update() {} catch {}
}
function getTombCirculatingSupply() public view returns (uint256) {
IERC20 tombErc20 = IERC20(tomb);
uint256 totalSupply = tombErc20.totalSupply();
uint256 balanceExcluded = 0;
for (uint8 entryId = 0; entryId < excludedFromTotalSupply.length; ++entryId) {
balanceExcluded = balanceExcluded.add(tombErc20.balanceOf(excludedFromTotalSupply[entryId]));
}
return totalSupply.sub(balanceExcluded);
}
function buyBonds(uint256 _tombAmount, uint256 targetPrice) external onlyOneBlock checkCondition checkOperator {
require(_tombAmount > 0, "Treasury: cannot purchase bonds with zero amount");
uint256 tombPrice = getTombPrice();
require(tombPrice == targetPrice, "Treasury: TOMB price moved");
require(
tombPrice < tombPriceOne, // price < $1
"Treasury: tombPrice not eligible for bond purchase"
);
require(_tombAmount <= epochSupplyContractionLeft, "Treasury: not enough bond left to purchase");
uint256 _rate = getBondDiscountRate();
require(_rate > 0, "Treasury: invalid bond rate");
uint256 _bondAmount = _tombAmount.mul(_rate).div(1e18);
uint256 tombSupply = getTombCirculatingSupply();
uint256 newBondSupply = IERC20(tbond).totalSupply().add(_bondAmount);
require(newBondSupply <= tombSupply.mul(maxDebtRatioPercent).div(10000), "over max debt ratio");
IBasisAsset(tomb).burnFrom(msg.sender, _tombAmount);
IBasisAsset(tbond).mint(msg.sender, _bondAmount);
epochSupplyContractionLeft = epochSupplyContractionLeft.sub(_tombAmount);
_updateTombPrice();
emit BoughtBonds(msg.sender, _tombAmount, _bondAmount);
}
function redeemBonds(uint256 _bondAmount, uint256 targetPrice) external onlyOneBlock checkCondition checkOperator {
require(_bondAmount > 0, "Treasury: cannot redeem bonds with zero amount");
uint256 tombPrice = getTombPrice();
require(tombPrice == targetPrice, "Treasury: TOMB price moved");
require(
tombPrice > tombPriceCeiling, // price > $1.01
"Treasury: tombPrice not eligible for bond purchase"
);
uint256 _rate = getBondPremiumRate();
require(_rate > 0, "Treasury: invalid bond rate");
uint256 _tombAmount = _bondAmount.mul(_rate).div(1e18);
require(IERC20(tomb).balanceOf(address(this)) >= _tombAmount, "Treasury: treasury has no more budget");
seigniorageSaved = seigniorageSaved.sub(Math.min(seigniorageSaved, _tombAmount));
IBasisAsset(tbond).burnFrom(msg.sender, _bondAmount);
IERC20(tomb).safeTransfer(msg.sender, _tombAmount);
_updateTombPrice();
emit RedeemedBonds(msg.sender, _tombAmount, _bondAmount);
}
function _sendToMasonry(uint256 _amount) internal {
IBasisAsset(tomb).mint(address(this), _amount);
uint256 _daoFundSharedAmount = 0;
if (daoFundSharedPercent > 0) {
_daoFundSharedAmount = _amount.mul(daoFundSharedPercent).div(10000);
IERC20(tomb).transfer(daoFund, _daoFundSharedAmount);
emit DaoFundFunded(now, _daoFundSharedAmount);
}
uint256 _devFundSharedAmount = 0;
if (devFundSharedPercent > 0) {
_devFundSharedAmount = _amount.mul(devFundSharedPercent).div(10000);
IERC20(tomb).transfer(devFund, _devFundSharedAmount);
emit DevFundFunded(now, _devFundSharedAmount);
}
_amount = _amount.sub(_daoFundSharedAmount).sub(_devFundSharedAmount);
IERC20(tomb).safeApprove(masonry, 0);
IERC20(tomb).safeApprove(masonry, _amount);
IMasonry(masonry).allocateSeigniorage(_amount);
emit MasonryFunded(now, _amount);
}
function _calculateMaxSupplyExpansionPercent(uint256 _tombSupply) internal returns (uint256) {
for (uint8 tierId = 8; tierId >= 0; --tierId) {
if (_tombSupply >= supplyTiers[tierId]) {
maxSupplyExpansionPercent = maxExpansionTiers[tierId];
break;
}
}
return maxSupplyExpansionPercent;
}
function allocateSeigniorage() external onlyOneBlock checkCondition checkEpoch checkOperator {
_updateTombPrice();
previousEpochTombPrice = getTombPrice();
uint256 tombSupply = getTombCirculatingSupply().sub(seigniorageSaved);
if (epoch < bootstrapEpochs) {
// 28 first epochs with 4.5% expansion
_sendToMasonry(tombSupply.mul(bootstrapSupplyExpansionPercent).div(10000));
} else {
if (previousEpochTombPrice > tombPriceCeiling) {
// Expansion ($TOMB Price > 1 $FTM): there is some seigniorage to be allocated
uint256 bondSupply = IERC20(tbond).totalSupply();
uint256 _percentage = previousEpochTombPrice.sub(tombPriceOne);
uint256 _savedForBond;
uint256 _savedForMasonry;
uint256 _mse = _calculateMaxSupplyExpansionPercent(tombSupply).mul(1e14);
if (_percentage > _mse) {
_percentage = _mse;
}
if (seigniorageSaved >= bondSupply.mul(bondDepletionFloorPercent).div(10000)) {
// saved enough to pay debt, mint as usual rate
_savedForMasonry = tombSupply.mul(_percentage).div(1e18);
} else {
// have not saved enough to pay debt, mint more
uint256 _seigniorage = tombSupply.mul(_percentage).div(1e18);
_savedForMasonry = _seigniorage.mul(seigniorageExpansionFloorPercent).div(10000);
_savedForBond = _seigniorage.sub(_savedForMasonry);
if (mintingFactorForPayingDebt > 0) {
_savedForBond = _savedForBond.mul(mintingFactorForPayingDebt).div(10000);
}
}
if (_savedForMasonry > 0) {
_sendToMasonry(_savedForMasonry);
}
if (_savedForBond > 0) {
seigniorageSaved = seigniorageSaved.add(_savedForBond);
IBasisAsset(tomb).mint(address(this), _savedForBond);
emit TreasuryFunded(now, _savedForBond);
}
}
}
}
function governanceRecoverUnsupported(
IERC20 _token,
uint256 _amount,
address _to
) external onlyOperator {
// do not allow to drain core tokens
require(address(_token) != address(tomb), "tomb");
require(address(_token) != address(tbond), "bond");
require(address(_token) != address(tshare), "share");
_token.safeTransfer(_to, _amount);
}
function masonrySetOperator(address _operator) external onlyOperator {
IMasonry(masonry).setOperator(_operator);
}
function masonrySetLockUp(uint256 _withdrawLockupEpochs, uint256 _rewardLockupEpochs) external onlyOperator {
IMasonry(masonry).setLockUp(_withdrawLockupEpochs, _rewardLockupEpochs);
}
function masonryAllocateSeigniorage(uint256 amount) external onlyOperator {
IMasonry(masonry).allocateSeigniorage(amount);
}
function masonryGovernanceRecoverUnsupported(
address _token,
uint256 _amount,
address _to
) external onlyOperator {
IMasonry(masonry).governanceRecoverUnsupported(_token, _amount, _to);
}
}
pragma solidity 0.6.12;
contract ContractGuard {
mapping(uint256 => mapping(address => bool)) private _status;
function checkSameOriginReentranted() internal view returns (bool) {
return _status[block.number][tx.origin];
}
function checkSameSenderReentranted() internal view returns (bool) {
return _status[block.number][msg.sender];
}
modifier onlyOneBlock() {
require(!checkSameOriginReentranted(), "ContractGuard: one block, one function");
require(!checkSameSenderReentranted(), "ContractGuard: one block, one function");
_;
_status[block.number][tx.origin] = true;
_status[block.number][msg.sender] = true;
}
}