Contract Name:
DisposableRamm
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.18;
import "../interfaces/ISAFURAMaster.sol";
import "../interfaces/IMasterAwareV2.sol";
import "../interfaces/IMemberRoles.sol";
abstract contract MasterAwareV2 is IMasterAwareV2 {
ISAFURAMaster public master;
mapping(uint => address payable) public internalContracts;
modifier onlyMember {
require(
IMemberRoles(internalContracts[uint(ID.MR)]).checkRole(
msg.sender,
uint(IMemberRoles.Role.Member)
),
"Caller is not a member"
);
_;
}
modifier onlyAdvisoryBoard {
require(
IMemberRoles(internalContracts[uint(ID.MR)]).checkRole(
msg.sender,
uint(IMemberRoles.Role.AdvisoryBoard)
),
"Caller is not an advisory board member"
);
_;
}
modifier onlyInternal {
require(master.isInternal(msg.sender), "Caller is not an internal contract");
_;
}
modifier onlyMaster {
if (address(master) != address(0)) {
require(address(master) == msg.sender, "Not master");
}
_;
}
modifier onlyGovernance {
require(
master.checkIsAuthToGoverned(msg.sender),
"Caller is not authorized to govern"
);
_;
}
modifier onlyEmergencyAdmin {
require(
msg.sender == master.emergencyAdmin(),
"Caller is not emergency admin"
);
_;
}
modifier whenPaused {
require(master.isPause(), "System is not paused");
_;
}
modifier whenNotPaused {
require(!master.isPause(), "System is paused");
_;
}
function getInternalContractAddress(ID id) internal view returns (address payable) {
return internalContracts[uint(id)];
}
function changeMasterAddress(address masterAddress) public onlyMaster {
master = ISAFURAMaster(masterAddress);
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
interface IMasterAwareV2 {
// TODO: if you update this enum, update lib/constants.js as well
enum ID {
TC, // TokenController.sol
P1, // Pool.sol
MR, // MemberRoles.sol
MC, // MCR.sol
CO, // Cover.sol
SP, // StakingProducts.sol
PS, // LegacyPooledStaking.sol
GV, // Governance.sol
GW, // LegacyGateway.sol - removed
CL, // CoverMigrator.sol - removed
AS, // Assessment.sol
CI, // IndividualClaims.sol - Claims for Individuals
CG, // YieldTokenIncidents.sol - Claims for Groups
RA, // Ramm.sol
ST, // SafeTracker.sol
CP // CoverProducts.sol
}
function changeMasterAddress(address masterAddress) external;
function changeDependentContractAddress() external;
function internalContracts(uint) external view returns (address payable);
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
interface IMCR {
function updateMCRInternal(bool forceUpdate) external;
function getMCR() external view returns (uint);
function mcr() external view returns (uint80);
function desiredMCR() external view returns (uint80);
function lastUpdateTime() external view returns (uint32);
function maxMCRIncrement() external view returns (uint16);
function gearingFactor() external view returns (uint24);
function minUpdateTime() external view returns (uint16);
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
interface IMemberRoles {
enum Role {Unassigned, AdvisoryBoard, Member, Owner, Auditor}
function join(address _userAddress, uint nonce, bytes calldata signature) external payable;
function switchMembership(address _newAddress) external;
function switchMembershipAndAssets(
address newAddress,
uint[] calldata coverIds,
uint[] calldata stakingTokenIds
) external;
function switchMembershipOf(address member, address _newAddress) external;
function totalRoles() external view returns (uint256);
function changeAuthorized(uint _roleId, address _newAuthorized) external;
function setKycAuthAddress(address _add) external;
function members(uint _memberRoleId) external view returns (uint, address[] memory memberArray);
function numberOfMembers(uint _memberRoleId) external view returns (uint);
function authorized(uint _memberRoleId) external view returns (address);
function roles(address _memberAddress) external view returns (uint[] memory);
function checkRole(address _memberAddress, uint _roleId) external view returns (bool);
function getMemberLengthForAllRoles() external view returns (uint[] memory totalMembers);
function memberAtIndex(uint _memberRoleId, uint index) external view returns (address, bool);
function membersLength(uint _memberRoleId) external view returns (uint);
event MemberRole(uint256 indexed roleId, bytes32 roleName, string roleDescription);
event MemberJoined(address indexed newMember, uint indexed nonce);
event switchedMembership(address indexed previousMember, address indexed newMember, uint timeStamp);
event MembershipWithdrawn(address indexed member, uint timestamp);
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
import "./IPriceFeedOracle.sol";
struct SwapDetails {
uint104 minAmount;
uint104 maxAmount;
uint32 lastSwapTime;
// 2 decimals of precision. 0.01% -> 0.0001 -> 1e14
uint16 maxSlippageRatio;
}
struct Asset {
address assetAddress;
bool isCoverAsset;
bool isAbandoned;
}
interface IPool {
function swapOperator() external view returns (address);
function getAsset(uint assetId) external view returns (Asset memory);
function getAssets() external view returns (Asset[] memory);
function transferAssetToSwapOperator(address asset, uint amount) external;
function setSwapDetailsLastSwapTime(address asset, uint32 lastSwapTime) external;
function getAssetSwapDetails(address assetAddress) external view returns (SwapDetails memory);
function sendPayout(uint assetIndex, address payable payoutAddress, uint amount, uint ethDepositAmount) external;
function sendEth(address payoutAddress, uint amount) external;
function upgradeCapitalPool(address payable newPoolAddress) external;
function priceFeedOracle() external view returns (IPriceFeedOracle);
function getPoolValueInEth() external view returns (uint);
function calculateMCRRatio(uint totalAssetValue, uint mcrEth) external pure returns (uint);
function getInternalTokenPriceInAsset(uint assetId) external view returns (uint tokenPrice);
function getInternalTokenPriceInAssetAndUpdateTwap(uint assetId) external returns (uint tokenPrice);
function getTokenPrice() external view returns (uint tokenPrice);
function getMCRRatio() external view returns (uint);
function setSwapValue(uint value) external;
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
interface Aggregator {
function decimals() external view returns (uint8);
function latestAnswer() external view returns (int);
}
interface IPriceFeedOracle {
struct OracleAsset {
Aggregator aggregator;
uint8 decimals;
}
function ETH() external view returns (address);
function assets(address) external view returns (Aggregator, uint8);
function getAssetToEthRate(address asset) external view returns (uint);
function getAssetForEth(address asset, uint ethIn) external view returns (uint);
function getEthForAsset(address asset, uint amount) external view returns (uint);
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
import "./IPool.sol";
import "./ISAFURAToken.sol";
import "./ITokenController.sol";
interface IRamm {
// storage structs
struct Slot0 {
uint128 nxmReserveA;
uint128 nxmReserveB;
}
struct Slot1 {
uint128 ethReserve;
uint88 budget;
uint32 updatedAt;
bool swapPaused; // emergency pause
}
struct Observation {
uint32 timestamp;
uint112 priceCumulativeAbove;
uint112 priceCumulativeBelow;
}
// memory structs
struct State {
uint nxmA;
uint nxmB;
uint eth;
uint budget;
uint ratchetSpeedB;
uint timestamp;
}
struct Context {
uint capital;
uint supply;
uint mcr;
}
struct CumulativePriceCalculationProps {
uint previousEthReserve;
uint currentEthReserve;
uint previousNxmA;
uint currentNxmA;
uint previousNxmB;
uint currentNxmB;
uint previousTimestamp;
uint observationTimestamp;
}
struct CumulativePriceCalculationTimes {
uint secondsUntilBVAbove;
uint secondsUntilBVBelow;
uint timeElapsed;
uint bvTimeBelow;
uint bvTimeAbove;
uint ratchetTimeAbove;
uint ratchetTimeBelow;
}
/* ========== VIEWS ========== */
function getReserves() external view returns (
uint ethReserve,
uint nxmA,
uint nxmB,
uint remainingBudget
);
function getSpotPrices() external view returns (uint spotPriceA, uint spotPriceB);
function getBookValue() external view returns (uint bookValue);
function getInternalPrice() external view returns (uint internalPrice);
/* ==== MUTATIVE FUNCTIONS ==== */
function updateTwap() external;
function getInternalPriceAndUpdateTwap() external returns (uint internalPrice);
function swap(uint nxmIn, uint minAmountOut, uint deadline) external payable returns (uint amountOut);
function removeBudget() external;
function setEmergencySwapPause(bool _swapPaused) external;
/* ========== EVENTS AND ERRORS ========== */
event EthSwappedForNxm(address indexed member, uint ethIn, uint nxmOut);
event NxmSwappedForEth(address indexed member, uint nxmIn, uint ethOut);
event ObservationUpdated(uint32 timestamp, uint112 priceCumulativeAbove, uint112 priceCumulativeBelow);
event BudgetRemoved();
event SwapPauseConfigured(bool paused);
event EthInjected(uint value);
event EthExtracted(uint value);
// Pause
error SystemPaused();
error SwapPaused();
// Input
error OneInputOnly();
error OneInputRequired();
// Expiry
error SwapExpired(uint deadline, uint blockTimestamp);
// Insufficient amount out
error InsufficientAmountOut(uint amountOut, uint minAmountOut);
// Buffer Zone
error NoSwapsInBufferZone();
// ETH Transfer
error EthTransferFailed();
// Circuit breakers
error EthCircuitBreakerHit();
error NxmCircuitBreakerHit();
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
interface ISAFURAMaster {
function tokenAddress() external view returns (address);
function owner() external view returns (address);
function emergencyAdmin() external view returns (address);
function masterInitialized() external view returns (bool);
function isInternal(address _add) external view returns (bool);
function isPause() external view returns (bool check);
function isMember(address _add) external view returns (bool);
function checkIsAuthToGoverned(address _add) external view returns (bool);
function getLatestAddress(bytes2 _contractName) external view returns (address payable contractAddress);
function contractAddresses(bytes2 code) external view returns (address payable);
function upgradeMultipleContracts(
bytes2[] calldata _contractCodes,
address payable[] calldata newAddresses
) external;
function removeContracts(bytes2[] calldata contractCodesToRemove) external;
function addNewInternalContracts(
bytes2[] calldata _contractCodes,
address payable[] calldata newAddresses,
uint[] calldata _types
) external;
function updateOwnerParameters(bytes8 code, address payable val) external;
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
interface ISAFURAToken {
function burn(uint256 amount) external returns (bool);
function burnFrom(address from, uint256 value) external returns (bool);
function operatorTransfer(address from, uint256 value) external returns (bool);
function mint(address account, uint256 amount) external;
function isLockedForMV(address member) external view returns (uint);
function whiteListed(address member) external view returns (bool);
function addToWhiteList(address _member) external returns (bool);
function removeFromWhiteList(address _member) external returns (bool);
function changeOperator(address _newOperator) external returns (bool);
function lockForMemberVote(address _of, uint _days) external;
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.5.0;
import "./ISAFURAToken.sol";
interface ITokenController {
struct StakingPoolNXMBalances {
uint128 rewards;
uint128 deposits;
}
struct CoverInfo {
uint16 claimCount;
bool hasOpenClaim;
bool hasAcceptedClaim;
uint96 requestedPayoutAmount;
// note: still 128 bits available here, can be used later
}
struct StakingPoolOwnershipOffer {
address proposedManager;
uint96 deadline;
}
function coverInfo(uint id) external view returns (
uint16 claimCount,
bool hasOpenClaim,
bool hasAcceptedClaim,
uint96 requestedPayoutAmount
);
function withdrawCoverNote(
address _of,
uint[] calldata _coverIds,
uint[] calldata _indexes
) external;
function changeOperator(address _newOperator) external;
function operatorTransfer(address _from, address _to, uint _value) external returns (bool);
function burnFrom(address _of, uint amount) external returns (bool);
function addToWhitelist(address _member) external;
function removeFromWhitelist(address _member) external;
function mint(address _member, uint _amount) external;
function lockForMemberVote(address _of, uint _days) external;
function withdrawClaimAssessmentTokens(address[] calldata users) external;
function getLockReasons(address _of) external view returns (bytes32[] memory reasons);
function totalSupply() external view returns (uint);
function totalBalanceOf(address _of) external view returns (uint amount);
function totalBalanceOfWithoutDelegations(address _of) external view returns (uint amount);
function getTokenPrice() external view returns (uint tokenPrice);
function token() external view returns (ISAFURAToken);
function getStakingPoolManager(uint poolId) external view returns (address manager);
function getManagerStakingPools(address manager) external view returns (uint[] memory poolIds);
function isStakingPoolManager(address member) external view returns (bool);
function getStakingPoolOwnershipOffer(uint poolId) external view returns (address proposedManager, uint deadline);
function transferStakingPoolsOwnership(address from, address to) external;
function assignStakingPoolManager(uint poolId, address manager) external;
function createStakingPoolOwnershipOffer(uint poolId, address proposedManager, uint deadline) external;
function acceptStakingPoolOwnershipOffer(uint poolId) external;
function cancelStakingPoolOwnershipOffer(uint poolId) external;
function mintStakingPoolNXMRewards(uint amount, uint poolId) external;
function burnStakingPoolNXMRewards(uint amount, uint poolId) external;
function depositStakedNXM(address from, uint amount, uint poolId) external;
function withdrawNXMStakeAndRewards(address to, uint stakeToWithdraw, uint rewardsToWithdraw, uint poolId) external;
function burnStakedNXM(uint amount, uint poolId) external;
function stakingPoolNXMBalances(uint poolId) external view returns(uint128 rewards, uint128 deposits);
function tokensLocked(address _of, bytes32 _reason) external view returns (uint256 amount);
function getWithdrawableCoverNotes(
address coverOwner
) external view returns (
uint[] memory coverIds,
bytes32[] memory lockReasons,
uint withdrawableAmount
);
function getPendingRewards(address member) external view returns (uint);
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.18;
/**
* @dev Simple library that defines min, max and babylonian sqrt functions
*/
library Math {
function min(uint a, uint b) internal pure returns (uint) {
return a < b ? a : b;
}
function max(uint a, uint b) internal pure returns (uint) {
return a > b ? a : b;
}
function sum(uint[] memory items) internal pure returns (uint) {
uint count = items.length;
uint total;
for (uint i = 0; i < count; i++) {
total += items[i];
}
return total;
}
function divRound(uint a, uint b) internal pure returns (uint) {
return (a + b / 2) / b;
}
function divCeil(uint a, uint b) internal pure returns (uint) {
return (a + b - 1) / b;
}
function roundUp(uint a, uint b) internal pure returns (uint) {
return divCeil(a, b) * b;
}
// babylonian method
function sqrt(uint y) internal pure returns (uint) {
if (y > 3) {
uint z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
return z;
}
if (y != 0) {
return 1;
}
return 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
/**
* @dev Wrappers over Solidity's uintXX casting operators with added overflow
* checks.
*
* Downcasting from uint256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeUintCast {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value < 2**248, "SafeCast: value doesn\'t fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value < 2**240, "SafeCast: value doesn\'t fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value < 2**232, "SafeCast: value doesn\'t fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value < 2**224, "SafeCast: value doesn\'t fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value < 2**216, "SafeCast: value doesn\'t fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value < 2**208, "SafeCast: value doesn\'t fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value < 2**200, "SafeCast: value doesn\'t fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value < 2**192, "SafeCast: value doesn\'t fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value < 2**184, "SafeCast: value doesn\'t fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value < 2**176, "SafeCast: value doesn\'t fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value < 2**168, "SafeCast: value doesn\'t fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value < 2**160, "SafeCast: value doesn\'t fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value < 2**152, "SafeCast: value doesn\'t fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value < 2**144, "SafeCast: value doesn\'t fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value < 2**136, "SafeCast: value doesn\'t fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value < 2**128, "SafeCast: value doesn\'t fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value < 2**120, "SafeCast: value doesn\'t fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value < 2**112, "SafeCast: value doesn\'t fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value < 2**104, "SafeCast: value doesn\'t fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value < 2**96, "SafeCast: value doesn\'t fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value < 2**88, "SafeCast: value doesn\'t fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value < 2**80, "SafeCast: value doesn\'t fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value < 2**64, "SafeCast: value doesn\'t fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value < 2**56, "SafeCast: value doesn\'t fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value < 2**48, "SafeCast: value doesn\'t fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
require(value < 2**40, "SafeCast: value doesn\'t fit in 40 bits");
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value < 2**32, "SafeCast: value doesn\'t fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
require(value < 2**24, "SafeCast: value doesn\'t fit in 24 bits");
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value < 2**16, "SafeCast: value doesn\'t fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits.
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value < 2**8, "SafeCast: value doesn\'t fit in 8 bits");
return uint8(value);
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.18;
import "../../modules/capital/Ramm.sol";
contract DisposableRamm is Ramm {
uint internal poolValue;
uint internal supply;
uint internal bondingCurveTokenPrice;
constructor(uint spotPriceB) Ramm(spotPriceB) {
//
}
function initialize(
uint _poolValue,
uint _totalSupply,
uint _bondingCurveTokenPrice
) external {
require(slot1.updatedAt == 0, "DisposableRamm: Already initialized");
// initialize values
poolValue = _poolValue;
supply = _totalSupply;
bondingCurveTokenPrice = _bondingCurveTokenPrice;
// set dependencies to point to self
internalContracts[uint(ID.P1)] = payable(address(this));
internalContracts[uint(ID.TC)] = payable(address(this));
internalContracts[uint(ID.MC)] = payable(address(this));
super.initialize();
slot1.swapPaused = false;
}
// fake pool functions
function getPoolValueInEth() external view returns (uint) {
return poolValue;
}
function totalSupply() external view returns (uint) {
return supply;
}
function getTokenPrice() external view returns (uint) {
return bondingCurveTokenPrice;
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.18;
import "@openzeppelin/contracts-v4/security/ReentrancyGuard.sol";
import "../../abstract/MasterAwareV2.sol";
import "../../interfaces/IMCR.sol";
import "../../interfaces/IPool.sol";
import "../../interfaces/IRamm.sol";
import "../../interfaces/ITokenController.sol";
import "../../libraries/Math.sol";
import "../../libraries/SafeUintCast.sol";
contract Ramm is IRamm, MasterAwareV2, ReentrancyGuard {
using SafeUintCast for uint;
using Math for uint;
/* ========== STATE VARIABLES ========== */
Slot0 public slot0;
Slot1 public slot1;
// one slot per array item
Observation[3] public observations;
// circuit breakers slot
uint96 public ethReleased;
uint32 public ethLimit;
uint96 public nxmReleased;
uint32 public nxmLimit;
/* ========== CONSTANTS ========== */
uint public constant LIQ_SPEED_PERIOD = 1 days;
uint public constant RATCHET_PERIOD = 1 days;
uint public constant RATCHET_DENOMINATOR = 10_000;
uint public constant PRICE_BUFFER = 100;
uint public constant PRICE_BUFFER_DENOMINATOR = 10_000;
uint public constant GRANULARITY = 3;
uint public constant PERIOD_SIZE = 3 days;
uint public constant FAST_LIQUIDITY_SPEED = 1_500 ether;
uint public constant TARGET_LIQUIDITY = 5_000 ether;
uint public constant LIQ_SPEED_A = 100 ether;
uint public constant LIQ_SPEED_B = 100 ether;
uint public constant NORMAL_RATCHET_SPEED = 400;
uint public constant FAST_RATCHET_SPEED = 5_000;
uint internal constant INITIAL_LIQUIDITY = 5_000 ether;
uint internal constant INITIAL_BUDGET = 43_835 ether;
// circuit breakers
uint internal constant INITIAL_ETH_LIMIT = 22_000;
uint internal constant INITIAL_NXM_LIMIT = 250_000;
/* ========== IMMUTABLES ========== */
uint internal immutable SPOT_PRICE_B;
/* ========== CONSTRUCTOR ========== */
constructor(uint spotPriceB) {
SPOT_PRICE_B = spotPriceB;
}
function loadState() public view returns (State memory) {
return State(
slot0.nxmReserveA,
slot0.nxmReserveB,
slot1.ethReserve,
slot1.budget,
slot1.budget == 0 ? NORMAL_RATCHET_SPEED : FAST_RATCHET_SPEED,
slot1.updatedAt
);
}
function storeState(State memory state) internal {
// slot 0
slot0.nxmReserveA = state.nxmA.toUint128();
slot0.nxmReserveB = state.nxmB.toUint128();
// slot 1
slot1.ethReserve = state.eth.toUint128();
slot1.budget = state.budget.toUint88();
slot1.updatedAt = state.timestamp.toUint32();
}
function ratchetSpeedB() external view returns (uint) {
return slot1.budget == 0 ? NORMAL_RATCHET_SPEED : FAST_RATCHET_SPEED;
}
function swapPaused() external view returns (bool) {
return slot1.swapPaused;
}
/**
* @notice Swaps nxmIn tokens for ETH or ETH sent for NXM tokens
* @param nxmIn The amount of NXM tokens to swap (set to 0 when swapping ETH for NXM)
* @param minAmountOut The minimum amount to receive in the swap (reverts with InsufficientAmountOut if not met)
* @param deadline The deadline for the swap to be executed (reverts with SwapExpired if deadline is surpassed)
* @return amountOut The amount received in the swap
*/
function swap(
uint nxmIn,
uint minAmountOut,
uint deadline
) external payable nonReentrant returns (uint) {
if (msg.value > 0 && nxmIn > 0) {
revert OneInputOnly();
}
if (msg.value == 0 && nxmIn == 0) {
revert OneInputRequired();
}
if (block.timestamp > deadline) {
revert SwapExpired(deadline, block.timestamp);
}
Context memory context = Context(
pool().getPoolValueInEth(), // capital
tokenController().totalSupply(), // supply
mcr().getMCR() // mcr
);
State memory initialState = loadState();
if (master.isPause()) {
revert SystemPaused();
}
if (slot1.swapPaused) {
revert SwapPaused();
}
uint amountOut = msg.value > 0
? swapEthForNxm(msg.value, minAmountOut, context, initialState)
: swapNxmForEth(nxmIn, minAmountOut, context, initialState);
if (msg.value > 0) {
nxmReleased = (nxmReleased + amountOut).toUint96();
if (nxmLimit > 0 && nxmReleased > uint(nxmLimit) * 1 ether) {
revert NxmCircuitBreakerHit();
}
} else {
ethReleased = (ethReleased + amountOut).toUint96();
if (ethLimit > 0 && ethReleased > uint(ethLimit) * 1 ether) {
revert EthCircuitBreakerHit();
}
}
mcr().updateMCRInternal(false);
return amountOut;
}
/**
* @dev should only be called by swap
*/
function swapEthForNxm(
uint ethIn,
uint minAmountOut,
Context memory context,
State memory initialState
) internal returns (uint nxmOut) {
Observation[3] memory _observations = observations;
// current state
(
State memory state,
uint injected,
uint extracted
) = _getReserves(initialState, context, block.timestamp);
_observations = _updateTwap(initialState, _observations, context, block.timestamp);
{
uint k = state.eth * state.nxmA;
uint newEth = state.eth + ethIn;
uint newNxmA = k / newEth;
uint newNxmB = state.nxmB * newEth / state.eth;
nxmOut = state.nxmA - newNxmA;
if (nxmOut < minAmountOut) {
revert InsufficientAmountOut(nxmOut, minAmountOut);
}
// edge case: below goes over bv due to eth-dai price changing
state.nxmA = newNxmA;
state.nxmB = newNxmB;
state.eth = newEth;
state.timestamp = block.timestamp;
}
storeState(state);
if (injected > 0) {
emit EthInjected(injected);
}
if (extracted > 0) {
emit EthExtracted(extracted);
}
for (uint i = 0; i < _observations.length; i++) {
observations[i] = _observations[i];
}
// transfer assets
(bool ok,) = address(pool()).call{value: msg.value}("");
if (ok != true) {
revert EthTransferFailed();
}
tokenController().mint(msg.sender, nxmOut);
emit EthSwappedForNxm(msg.sender, ethIn, nxmOut);
return nxmOut;
}
/**
* @dev should only be called by swap
*/
function swapNxmForEth(
uint nxmIn,
uint minAmountOut,
Context memory context,
State memory initialState
) internal returns (uint ethOut) {
Observation[3] memory _observations = observations;
// current state
(
State memory state,
uint injected,
uint extracted
) = _getReserves(initialState, context, block.timestamp);
_observations = _updateTwap(initialState, _observations, context, block.timestamp);
{
uint k = state.eth * state.nxmB;
uint newNxmB = state.nxmB + nxmIn;
uint newEth = k / newNxmB;
uint newNxmA = state.nxmA * newEth / state.eth;
ethOut = state.eth - newEth;
if (ethOut < minAmountOut) {
revert InsufficientAmountOut(ethOut, minAmountOut);
}
if (context.capital - ethOut < context.mcr) {
revert NoSwapsInBufferZone();
}
// update storage
state.nxmA = newNxmA;
state.nxmB = newNxmB;
state.eth = newEth;
state.timestamp = block.timestamp;
}
storeState(state);
if (injected > 0) {
emit EthInjected(injected);
}
if (extracted > 0) {
emit EthExtracted(extracted);
}
for (uint i = 0; i < _observations.length; i++) {
observations[i] = _observations[i];
}
tokenController().burnFrom(msg.sender, nxmIn);
pool().sendEth(msg.sender, ethOut);
emit NxmSwappedForEth(msg.sender, nxmIn, ethOut);
return ethOut;
}
/**
* @notice Sets the budget to 0
* @dev Can only be called by governance
*/
function removeBudget() external onlyGovernance {
slot1.budget = 0;
emit BudgetRemoved();
}
/**
* @notice Sets swap emergency pause
* @dev Can only be called by the emergency admin
* @param _swapPaused to toggle swap emergency pause ON/OFF
*/
function setEmergencySwapPause(bool _swapPaused) external onlyEmergencyAdmin {
slot1.swapPaused = _swapPaused;
emit SwapPauseConfigured(_swapPaused);
}
function setCircuitBreakerLimits(
uint _ethLimit,
uint _nxmLimit
) external onlyEmergencyAdmin {
ethLimit = _ethLimit.toUint32();
nxmLimit = _nxmLimit.toUint32();
}
/* ============== VIEWS ============= */
/**
* @notice Retrieves the current reserves of the RAMM contract
* @return _ethReserve The current ETH reserve
* @return nxmA The current NXM buy price
* @return nxmB The current NXM sell price
* @return _budget The current ETH budget used for injection
*/
function getReserves() external view returns (uint _ethReserve, uint nxmA, uint nxmB, uint _budget) {
Context memory context = Context(
pool().getPoolValueInEth(), // capital
tokenController().totalSupply(), // supply
mcr().getMCR() // mcr
);
(
State memory state,
/* injected */,
/* extracted */
) = _getReserves(loadState(), context, block.timestamp);
return (state.eth, state.nxmA, state.nxmB, state.budget);
}
function calculateInjected(
uint eth,
uint budget,
Context memory context,
uint elapsed
) internal pure returns (uint) {
uint timeLeftOnBudget = budget * LIQ_SPEED_PERIOD / FAST_LIQUIDITY_SPEED;
uint maxToInject = (context.capital > context.mcr + TARGET_LIQUIDITY)
? Math.min(TARGET_LIQUIDITY - eth, context.capital - context.mcr - TARGET_LIQUIDITY)
: 0;
if (elapsed <= timeLeftOnBudget) {
return Math.min(elapsed * FAST_LIQUIDITY_SPEED / LIQ_SPEED_PERIOD, maxToInject);
}
uint injectedFast = timeLeftOnBudget * FAST_LIQUIDITY_SPEED / LIQ_SPEED_PERIOD;
uint injectedSlow = (elapsed - timeLeftOnBudget) * LIQ_SPEED_B / LIQ_SPEED_PERIOD;
return Math.min(maxToInject, injectedFast + injectedSlow);
}
function adjustEth(
uint eth,
uint budget,
Context memory context,
uint elapsed
) internal pure returns (uint /* new eth */, uint /* new budget */, uint injected, uint extracted) {
if (eth < TARGET_LIQUIDITY) {
injected = calculateInjected(eth, budget, context, elapsed);
eth += injected;
budget = budget > injected ? budget - injected : 0;
} else {
extracted = Math.min((elapsed * LIQ_SPEED_A) / LIQ_SPEED_PERIOD, eth - TARGET_LIQUIDITY);
eth -= extracted;
}
return (eth, budget, injected, extracted);
}
function calculateNxm(
State memory state,
uint eth,
uint elapsed,
Context memory context,
bool isAbove
) internal pure returns (uint) {
uint stateNxm = isAbove ? state.nxmA : state.nxmB;
uint nxm = stateNxm * eth / state.eth;
uint buffer = isAbove ? PRICE_BUFFER_DENOMINATOR + PRICE_BUFFER : PRICE_BUFFER_DENOMINATOR - PRICE_BUFFER;
uint bufferedCapital = context.capital * buffer / PRICE_BUFFER_DENOMINATOR;
if (isAbove) {
// ratchet above
// cap*n*(1+r) > e*sup
// cap*n + cap*n*r > e*sup
// ? set n(new) = n(BV)
// : set n(new) = n(R)
return bufferedCapital * nxm + bufferedCapital * nxm * elapsed * NORMAL_RATCHET_SPEED / RATCHET_PERIOD / RATCHET_DENOMINATOR > eth * context.supply
? eth * context.supply / bufferedCapital // bv
: eth * nxm / (eth - context.capital * nxm * elapsed * NORMAL_RATCHET_SPEED / context.supply / RATCHET_PERIOD / RATCHET_DENOMINATOR); // ratchet
}
// ratchet below
// check if we should be using the ratchet or the book value price using:
// Nbv > Nr <=>
// ... <=>
// cap*n < e*sup + cap*n*r
// ? set n(new) = n(BV)
// : set n(new) = n(R)
return bufferedCapital * nxm < eth * context.supply + context.capital * nxm * elapsed * state.ratchetSpeedB / RATCHET_PERIOD / RATCHET_DENOMINATOR
? eth * context.supply / bufferedCapital // bv
: eth * nxm / (eth + context.capital * nxm * elapsed * state.ratchetSpeedB/ context.supply / RATCHET_PERIOD / RATCHET_DENOMINATOR); // ratchet
}
function _getReserves(
State memory state,
Context memory context,
uint currentTimestamp
) public pure returns (State memory /* new state */, uint injected, uint extracted) {
uint eth = state.eth;
uint budget = state.budget;
uint elapsed = currentTimestamp - state.timestamp;
(eth, budget, injected, extracted) = adjustEth(eth, budget, context, elapsed);
uint nxmA = calculateNxm(state, eth, elapsed, context, true);
uint nxmB = calculateNxm(state, eth, elapsed, context, false);
return (
State(nxmA, nxmB, eth, budget, state.ratchetSpeedB, currentTimestamp),
injected,
extracted
);
}
/**
* @notice Retrieves the current NXM spot prices
* @return spotPriceA The current NXM buy price
* @return spotPriceB The current NXM sell price
*/
function getSpotPrices() external view returns (uint spotPriceA, uint spotPriceB) {
Context memory context = Context(
pool().getPoolValueInEth(), // capital
tokenController().totalSupply(), // supply
mcr().getMCR() // mcr
);
(
State memory state,
/* injected */,
/* extracted */
) = _getReserves(loadState(), context, block.timestamp);
return (
1 ether * state.eth / state.nxmA,
1 ether * state.eth / state.nxmB
);
}
/**
* @notice Retrieves the current NXM book value
* @return bookValue the current NXM book value
*/
function getBookValue() external view returns (uint bookValue) {
uint capital = pool().getPoolValueInEth();
uint supply = tokenController().totalSupply();
return 1 ether * capital / supply;
}
/* ========== ORACLE ========== */
function observationIndexOf(uint timestamp) internal pure returns (uint index) {
return timestamp.divCeil(PERIOD_SIZE) % GRANULARITY;
}
function calculateTimeOnRatchetAndBV(
State memory previousState,
uint timeElapsed,
uint stateRatchetSpeedB,
uint supply,
uint capital,
bool isAbove
) internal pure returns (uint timeOnRatchet, uint timeOnBV) {
// Formula to find out how much time it takes for ratchet price to hit BV + buffer
//
// above:
// inner = (eth * supply) - (buffer * capital * nxm)
//
// below:
// inner = (buffer * capital * nxm) - (eth * supply)
//
// [inner * denom * period] / (capital * nxm * speed)
uint prevNxm = isAbove ? previousState.nxmA : previousState.nxmB;
uint currentRatchetSpeed = isAbove ? NORMAL_RATCHET_SPEED : stateRatchetSpeedB;
uint bufferMultiplier = isAbove
? (PRICE_BUFFER_DENOMINATOR + PRICE_BUFFER)
: (PRICE_BUFFER_DENOMINATOR - PRICE_BUFFER);
uint inner;
{
uint ethTerm = previousState.eth * supply;
uint nxmTerm = bufferMultiplier * capital * prevNxm / PRICE_BUFFER_DENOMINATOR;
uint innerLeft = isAbove ? ethTerm : nxmTerm;
uint innerRight = isAbove ? nxmTerm : ethTerm;
inner = innerLeft > innerRight ? innerLeft - innerRight : 0;
}
uint maxTimeOnRatchet = inner != 0
? (inner * RATCHET_DENOMINATOR * RATCHET_PERIOD) / (capital * prevNxm * currentRatchetSpeed)
: 0;
timeOnRatchet = Math.min(timeElapsed, maxTimeOnRatchet);
timeOnBV = timeElapsed - timeOnRatchet;
return (timeOnRatchet, timeOnBV);
}
function calculatePriceCumulative(
State memory previousState,
State memory state,
uint timeElapsed,
uint capital,
uint supply,
bool isAbove
) internal pure returns (uint) {
// average price
// pe - previous eth
// pn - previous nxm
// ce - current eth
// cn - current nxm
//
// P = (pe / pn + ce / cn) / 2
// = (pe * cn + ce * pn) / (2 * pn * cn)
//
// cumulative price = P * time_on_ratchet
// = (pe * cn + ce * pn) * time_on_ratchet / (2 * pn * cn)
// cumulative price on bv +- buffer
// (time_total - time_on_ratchet) * bv * buffer
uint cumulativePrice = 0;
(uint timeOnRatchet, uint timeOnBV) = calculateTimeOnRatchetAndBV(
previousState,
timeElapsed,
state.ratchetSpeedB,
supply,
capital,
isAbove
);
if (timeOnRatchet != 0) {
uint prevNxm = isAbove ? previousState.nxmA : previousState.nxmB;
uint currentNxm = isAbove ? state.nxmA : state.nxmB;
cumulativePrice += 1 ether * (previousState.eth * currentNxm + state.eth * prevNxm) * timeOnRatchet / (prevNxm * currentNxm * 2);
}
if (timeOnBV != 0) {
uint bufferMultiplier = isAbove ? (PRICE_BUFFER_DENOMINATOR + PRICE_BUFFER) : (PRICE_BUFFER_DENOMINATOR - PRICE_BUFFER);
cumulativePrice += 1 ether * timeOnBV * capital * bufferMultiplier / (supply * PRICE_BUFFER_DENOMINATOR);
}
return cumulativePrice;
}
function getObservation(
State memory previousState,
State memory state,
Observation memory previousObservation,
uint capital,
uint supply
) public pure returns (Observation memory) {
uint timeElapsed = state.timestamp - previousState.timestamp;
uint priceCumulativeAbove = calculatePriceCumulative(
previousState,
state,
timeElapsed,
capital,
supply,
true
);
uint priceCumulativeBelow = calculatePriceCumulative(
previousState,
state,
timeElapsed,
capital,
supply,
false
);
return Observation(
state.timestamp.toUint32(),
// casting unsafely to allow overflow
uint112(priceCumulativeAbove + previousObservation.priceCumulativeAbove),
uint112(priceCumulativeBelow + previousObservation.priceCumulativeBelow)
);
}
function getInitialObservations(
uint initialPriceA,
uint initialPriceB,
uint timestamp
) public pure returns (Observation[3] memory initialObservations) {
uint priceCumulativeAbove;
uint priceCumulativeBelow;
uint endIdx = timestamp.divCeil(PERIOD_SIZE);
uint previousTimestamp = (endIdx - 11) * PERIOD_SIZE; // 27 days | 3 days | until the deployments
for (uint idx = endIdx - 2; idx <= endIdx; idx++) {
uint observationTimestamp = Math.min(timestamp, idx * PERIOD_SIZE);
uint observationIndex = idx % GRANULARITY;
uint timeElapsed = observationTimestamp - previousTimestamp;
priceCumulativeAbove += initialPriceA * timeElapsed;
priceCumulativeBelow += initialPriceB * timeElapsed;
initialObservations[observationIndex] = Observation(
observationTimestamp.toUint32(),
uint112(priceCumulativeAbove),
uint112(priceCumulativeBelow)
);
previousTimestamp = observationTimestamp;
}
return initialObservations;
}
/**
* @notice Updates the Time-Weighted Average Price (TWAP) by registering new price observations
*/
function updateTwap() external {
State memory initialState = loadState();
if (initialState.timestamp == block.timestamp) {
// already updated
return;
}
Context memory context = Context(
pool().getPoolValueInEth(), // capital
tokenController().totalSupply(), // supply
mcr().getMCR() // mcr
);
Observation[3] memory _observations = observations;
// current state
(
State memory state,
uint injected,
uint extracted
) = _getReserves(initialState, context, block.timestamp);
_observations = _updateTwap(initialState, _observations, context, block.timestamp);
for (uint i = 0; i < _observations.length; i++) {
observations[i] = _observations[i];
emit ObservationUpdated(
observations[i].timestamp,
observations[i].priceCumulativeAbove,
observations[i].priceCumulativeBelow
);
}
storeState(state);
if (injected > 0) {
emit EthInjected(injected);
}
if (extracted > 0) {
emit EthExtracted(extracted);
}
}
function _updateTwap(
State memory initialState,
Observation[3] memory _observations,
Context memory context,
uint currentStateTimestamp
) public pure returns (Observation[3] memory) {
uint endIdx = currentStateTimestamp.divCeil(PERIOD_SIZE);
State memory previousState = initialState;
Observation memory previousObservation = _observations[observationIndexOf(initialState.timestamp)];
Observation[3] memory newObservations;
for (uint idx = endIdx - 2; idx <= endIdx; idx++) {
uint observationTimestamp = Math.min(currentStateTimestamp, idx * PERIOD_SIZE);
uint observationIndex = idx % GRANULARITY;
if (observationTimestamp <= previousState.timestamp) {
newObservations[observationIndex] = Observation(
_observations[observationIndex].timestamp,
_observations[observationIndex].priceCumulativeAbove,
_observations[observationIndex].priceCumulativeBelow
);
continue;
}
(
State memory state,
/* injected */,
/* extracted */
) = _getReserves(previousState, context, observationTimestamp);
newObservations[observationIndex] = getObservation(
previousState,
state,
previousObservation,
context.capital,
context.supply
);
previousState = state;
previousObservation = newObservations[observationIndex];
}
return newObservations;
}
function getInternalPriceAndUpdateTwap() external returns (uint internalPrice) {
Context memory context = Context(
pool().getPoolValueInEth(), // capital
tokenController().totalSupply(), // supply
mcr().getMCR() // mcr
);
State memory initialState = loadState();
Observation[3] memory _observations = observations;
// current state
(
State memory state,
uint injected,
uint extracted
) = _getReserves(initialState, context, block.timestamp);
_observations = _updateTwap(initialState, _observations, context, block.timestamp);
// sstore observations and state
for (uint i = 0; i < _observations.length; i++) {
observations[i] = _observations[i];
emit ObservationUpdated(
observations[i].timestamp,
observations[i].priceCumulativeAbove,
observations[i].priceCumulativeBelow
);
}
storeState(state);
if (injected > 0) {
emit EthInjected(injected);
}
if (extracted > 0) {
emit EthExtracted(extracted);
}
return _getInternalPrice(state, _observations, context.capital, context.supply, block.timestamp);
}
function _getInternalPrice(
State memory state,
Observation[3] memory _observations,
uint capital,
uint supply,
uint timestamp
) public pure returns (uint) {
uint currentIdx = observationIndexOf(timestamp);
// index of first observation in window = current - 2
// adding 1 and applying modulo gives the same result avoiding underflow
Observation memory firstObservation = _observations[(currentIdx + 1) % GRANULARITY];
Observation memory currentObservation = _observations[currentIdx];
uint spotPriceA = 1 ether * state.eth / state.nxmA;
uint spotPriceB = 1 ether * state.eth / state.nxmB;
uint internalPrice;
// underflow is desired
unchecked {
uint elapsed = timestamp - firstObservation.timestamp;
uint averagePriceA = uint(currentObservation.priceCumulativeAbove - firstObservation.priceCumulativeAbove) / elapsed;
uint averagePriceB = uint(currentObservation.priceCumulativeBelow - firstObservation.priceCumulativeBelow) / elapsed;
// keeping min/max inside unchecked scope to avoid stack too deep error
uint priceA = Math.min(averagePriceA, spotPriceA);
uint priceB = Math.max(averagePriceB, spotPriceB);
internalPrice = priceA + priceB - 1 ether * capital / supply;
}
uint maxPrice = 3 * 1 ether * capital / supply; // 300% BV
uint minPrice = 35 * 1 ether * capital / supply / 100; // 35% BV
internalPrice = Math.max(Math.min(internalPrice, maxPrice), minPrice);
return internalPrice;
}
function getInternalPrice() external view returns (uint internalPrice) {
Context memory context = Context(
pool().getPoolValueInEth(), // capital
tokenController().totalSupply(), // supply
mcr().getMCR() // mcr
);
State memory initialState = loadState();
Observation[3] memory _observations = observations;
(
State memory state,
/* injected */,
/* extracted */
) = _getReserves(initialState, context, block.timestamp);
_observations = _updateTwap(initialState, _observations, context, block.timestamp);
return _getInternalPrice(state, _observations, context.capital, context.supply, block.timestamp);
}
/* ========== DEPENDENCIES ========== */
function pool() internal view returns (IPool) {
return IPool(internalContracts[uint(ID.P1)]);
}
function mcr() internal view returns (IMCR) {
return IMCR(internalContracts[uint(ID.MC)]);
}
function tokenController() internal view returns (ITokenController) {
return ITokenController(internalContracts[uint(ID.TC)]);
}
function changeDependentContractAddress() external override {
internalContracts[uint(ID.P1)] = master.getLatestAddress("P1");
internalContracts[uint(ID.TC)] = master.getLatestAddress("TC");
internalContracts[uint(ID.MC)] = master.getLatestAddress("MC");
initialize();
}
function initialize() internal {
if (slot1.updatedAt != 0) {
// already initialized
return;
}
uint capital = pool().getPoolValueInEth();
uint supply = tokenController().totalSupply();
uint bondingCurvePrice = pool().getTokenPrice();
uint initialPriceA = bondingCurvePrice + 1 ether * capital * PRICE_BUFFER / PRICE_BUFFER_DENOMINATOR / supply;
uint initialPriceB = 1 ether * capital * (PRICE_BUFFER_DENOMINATOR - PRICE_BUFFER) / PRICE_BUFFER_DENOMINATOR / supply;
uint128 nxmReserveA = (INITIAL_LIQUIDITY * 1 ether / initialPriceA).toUint128();
uint128 nxmReserveB = (INITIAL_LIQUIDITY * 1 ether / SPOT_PRICE_B).toUint128();
uint128 ethReserve = INITIAL_LIQUIDITY.toUint128();
uint88 budget = INITIAL_BUDGET.toUint88();
uint _ratchetSpeedB = FAST_RATCHET_SPEED;
uint32 updatedAt = block.timestamp.toUint32();
ethLimit = INITIAL_ETH_LIMIT.toUint32();
nxmLimit = INITIAL_NXM_LIMIT.toUint32();
// start paused
slot1.swapPaused = true;
State memory state = State(
nxmReserveA,
nxmReserveB,
ethReserve,
budget,
_ratchetSpeedB,
updatedAt
);
storeState(state);
Observation[3] memory _observations = getInitialObservations(initialPriceA, initialPriceB, updatedAt);
for (uint i = 0; i < _observations.length; i++) {
observations[i] = _observations[i];
}
}
}