Contract Name:
ReserveLogic
Contract Source Code:
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly {
codehash := extcodehash(account)
}
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, 'Address: insufficient balance');
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{value: amount}('');
require(success, 'Address: unable to send value, recipient may have reverted');
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import {IERC20} from './IERC20.sol';
import {SafeMath} from './SafeMath.sol';
import {Address} from './Address.sol';
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
'SafeERC20: approve from non-zero to non-zero allowance'
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), 'SafeERC20: call to non-contract');
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, 'SafeERC20: low-level call failed');
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed');
}
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, 'SafeMath: addition overflow');
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, 'SafeMath: subtraction overflow');
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, 'SafeMath: multiplication overflow');
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, 'SafeMath: division by zero');
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, 'SafeMath: modulo by zero');
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;
interface IAaveIncentivesController {
event RewardsAccrued(address indexed user, uint256 amount);
event RewardsClaimed(address indexed user, address indexed to, uint256 amount);
event RewardsClaimed(
address indexed user,
address indexed to,
address indexed claimer,
uint256 amount
);
event ClaimerSet(address indexed user, address indexed claimer);
/*
* @dev Returns the configuration of the distribution for a certain asset
* @param asset The address of the reference asset of the distribution
* @return The asset index, the emission per second and the last updated timestamp
**/
function getAssetData(address asset)
external
view
returns (
uint256,
uint256,
uint256
);
/**
* @dev Whitelists an address to claim the rewards on behalf of another address
* @param user The address of the user
* @param claimer The address of the claimer
*/
function setClaimer(address user, address claimer) external;
/**
* @dev Returns the whitelisted claimer for a certain address (0x0 if not set)
* @param user The address of the user
* @return The claimer address
*/
function getClaimer(address user) external view returns (address);
/**
* @dev Configure assets for a certain rewards emission
* @param assets The assets to incentivize
* @param emissionsPerSecond The emission for each asset
*/
function configureAssets(address[] calldata assets, uint256[] calldata emissionsPerSecond)
external;
/**
* @dev Called by the corresponding asset on any update that affects the rewards distribution
* @param user The address of the user
* @param userBalance The balance of the user of the asset in the lending pool
* @param totalSupply The total supply of the asset in the lending pool
**/
function handleAction(
address user,
uint256 userBalance,
uint256 totalSupply
) external;
/**
* @dev Returns the total of rewards of an user, already accrued + not yet accrued
* @param user The address of the user
* @return The rewards
**/
function getRewardsBalance(address[] calldata assets, address user)
external
view
returns (uint256);
/**
* @dev Claims reward for an user, on all the assets of the lending pool, accumulating the pending rewards
* @param amount Amount of rewards to claim
* @param to Address that will be receiving the rewards
* @return Rewards claimed
**/
function claimRewards(
address[] calldata assets,
uint256 amount,
address to
) external returns (uint256);
/**
* @dev Claims reward for an user on behalf, on all the assets of the lending pool, accumulating the pending rewards. The caller must
* be whitelisted via "allowClaimOnBehalf" function by the RewardsAdmin role manager
* @param amount Amount of rewards to claim
* @param user Address to check and claim rewards
* @param to Address that will be receiving the rewards
* @return Rewards claimed
**/
function claimRewardsOnBehalf(
address[] calldata assets,
uint256 amount,
address user,
address to
) external returns (uint256);
/**
* @dev returns the unclaimed rewards of the user
* @param user the address of the user
* @return the unclaimed user rewards
*/
function getUserUnclaimedRewards(address user) external view returns (uint256);
/**
* @dev returns the unclaimed rewards of the user
* @param user the address of the user
* @param asset The asset to incentivize
* @return the user index for the asset
*/
function getUserAssetData(address user, address asset) external view returns (uint256);
/**
* @dev for backward compatibility with previous implementation of the Incentives controller
*/
function REWARD_TOKEN() external view returns (address);
/**
* @dev for backward compatibility with previous implementation of the Incentives controller
*/
function PRECISION() external view returns (uint8);
/**
* @dev Gets the distribution end timestamp of the emissions
*/
function DISTRIBUTION_END() external view returns (uint256);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {IERC20} from '../dependencies/openzeppelin/contracts/IERC20.sol';
import {IScaledBalanceToken} from './IScaledBalanceToken.sol';
import {IInitializableAToken} from './IInitializableAToken.sol';
import {IAaveIncentivesController} from './IAaveIncentivesController.sol';
interface IAToken is IERC20, IScaledBalanceToken, IInitializableAToken {
/**
* @dev Emitted after the mint action
* @param from The address performing the mint
* @param value The amount being
* @param index The new liquidity index of the reserve
**/
event Mint(address indexed from, uint256 value, uint256 index);
/**
* @dev Mints `amount` aTokens to `user`
* @param user The address receiving the minted tokens
* @param amount The amount of tokens getting minted
* @param index The new liquidity index of the reserve
* @return `true` if the the previous balance of the user was 0
*/
function mint(
address user,
uint256 amount,
uint256 index
) external returns (bool);
/**
* @dev Emitted after aTokens are burned
* @param from The owner of the aTokens, getting them burned
* @param target The address that will receive the underlying
* @param value The amount being burned
* @param index The new liquidity index of the reserve
**/
event Burn(address indexed from, address indexed target, uint256 value, uint256 index);
/**
* @dev Emitted during the transfer action
* @param from The user whose tokens are being transferred
* @param to The recipient
* @param value The amount being transferred
* @param index The new liquidity index of the reserve
**/
event BalanceTransfer(address indexed from, address indexed to, uint256 value, uint256 index);
/**
* @dev Burns aTokens from `user` and sends the equivalent amount of underlying to `receiverOfUnderlying`
* @param user The owner of the aTokens, getting them burned
* @param receiverOfUnderlying The address that will receive the underlying
* @param amount The amount being burned
* @param index The new liquidity index of the reserve
**/
function burn(
address user,
address receiverOfUnderlying,
uint256 amount,
uint256 index
) external;
/**
* @dev Mints aTokens to the reserve treasury
* @param amount The amount of tokens getting minted
* @param index The new liquidity index of the reserve
*/
function mintToTreasury(uint256 amount, uint256 index) external;
/**
* @dev Transfers aTokens in the event of a borrow being liquidated, in case the liquidators reclaims the aToken
* @param from The address getting liquidated, current owner of the aTokens
* @param to The recipient
* @param value The amount of tokens getting transferred
**/
function transferOnLiquidation(
address from,
address to,
uint256 value
) external;
/**
* @dev Transfers the underlying asset to `target`. Used by the LendingPool to transfer
* assets in borrow(), withdraw() and flashLoan()
* @param user The recipient of the underlying
* @param amount The amount getting transferred
* @return The amount transferred
**/
function transferUnderlyingTo(address user, uint256 amount) external returns (uint256);
/**
* @dev Invoked to execute actions on the aToken side after a repayment.
* @param user The user executing the repayment
* @param amount The amount getting repaid
**/
function handleRepayment(address user, uint256 amount) external;
/**
* @dev Returns the address of the incentives controller contract
**/
function getIncentivesController() external view returns (IAaveIncentivesController);
/**
* @dev Returns the address of the underlying asset of this aToken (E.g. WETH for aWETH)
**/
function UNDERLYING_ASSET_ADDRESS() external view returns (address);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {ILendingPool} from './ILendingPool.sol';
import {IAaveIncentivesController} from './IAaveIncentivesController.sol';
/**
* @title IInitializableAToken
* @notice Interface for the initialize function on AToken
* @author Aave
**/
interface IInitializableAToken {
/**
* @dev Emitted when an aToken is initialized
* @param underlyingAsset The address of the underlying asset
* @param pool The address of the associated lending pool
* @param treasury The address of the treasury
* @param incentivesController The address of the incentives controller for this aToken
* @param aTokenDecimals the decimals of the underlying
* @param aTokenName the name of the aToken
* @param aTokenSymbol the symbol of the aToken
* @param params A set of encoded parameters for additional initialization
**/
event Initialized(
address indexed underlyingAsset,
address indexed pool,
address treasury,
address incentivesController,
uint8 aTokenDecimals,
string aTokenName,
string aTokenSymbol,
bytes params
);
/**
* @dev Initializes the aToken
* @param pool The address of the lending pool where this aToken will be used
* @param treasury The address of the Aave treasury, receiving the fees on this aToken
* @param underlyingAsset The address of the underlying asset of this aToken (E.g. WETH for aWETH)
* @param incentivesController The smart contract managing potential incentives distribution
* @param aTokenDecimals The decimals of the aToken, same as the underlying asset's
* @param aTokenName The name of the aToken
* @param aTokenSymbol The symbol of the aToken
*/
function initialize(
ILendingPool pool,
address treasury,
address underlyingAsset,
IAaveIncentivesController incentivesController,
uint8 aTokenDecimals,
string calldata aTokenName,
string calldata aTokenSymbol,
bytes calldata params
) external;
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {ILendingPool} from './ILendingPool.sol';
import {IAaveIncentivesController} from './IAaveIncentivesController.sol';
/**
* @title IInitializableDebtToken
* @notice Interface for the initialize function common between debt tokens
* @author Aave
**/
interface IInitializableDebtToken {
/**
* @dev Emitted when a debt token is initialized
* @param underlyingAsset The address of the underlying asset
* @param pool The address of the associated lending pool
* @param incentivesController The address of the incentives controller for this aToken
* @param debtTokenDecimals the decimals of the debt token
* @param debtTokenName the name of the debt token
* @param debtTokenSymbol the symbol of the debt token
* @param params A set of encoded parameters for additional initialization
**/
event Initialized(
address indexed underlyingAsset,
address indexed pool,
address incentivesController,
uint8 debtTokenDecimals,
string debtTokenName,
string debtTokenSymbol,
bytes params
);
/**
* @dev Initializes the debt token.
* @param pool The address of the lending pool where this aToken will be used
* @param underlyingAsset The address of the underlying asset of this aToken (E.g. WETH for aWETH)
* @param incentivesController The smart contract managing potential incentives distribution
* @param debtTokenDecimals The decimals of the debtToken, same as the underlying asset's
* @param debtTokenName The name of the token
* @param debtTokenSymbol The symbol of the token
*/
function initialize(
ILendingPool pool,
address underlyingAsset,
IAaveIncentivesController incentivesController,
uint8 debtTokenDecimals,
string memory debtTokenName,
string memory debtTokenSymbol,
bytes calldata params
) external;
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;
import {ILendingPoolAddressesProvider} from './ILendingPoolAddressesProvider.sol';
import {DataTypes} from '../protocol/libraries/types/DataTypes.sol';
interface ILendingPool {
/**
* @dev Emitted on deposit()
* @param reserve The address of the underlying asset of the reserve
* @param user The address initiating the deposit
* @param onBehalfOf The beneficiary of the deposit, receiving the aTokens
* @param amount The amount deposited
* @param referral The referral code used
**/
event Deposit(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint16 indexed referral
);
/**
* @dev Emitted on withdraw()
* @param reserve The address of the underlyng asset being withdrawn
* @param user The address initiating the withdrawal, owner of aTokens
* @param to Address that will receive the underlying
* @param amount The amount to be withdrawn
**/
event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount);
/**
* @dev Emitted on borrow() and flashLoan() when debt needs to be opened
* @param reserve The address of the underlying asset being borrowed
* @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just
* initiator of the transaction on flashLoan()
* @param onBehalfOf The address that will be getting the debt
* @param amount The amount borrowed out
* @param borrowRateMode The rate mode: 1 for Stable, 2 for Variable
* @param borrowRate The numeric rate at which the user has borrowed
* @param referral The referral code used
**/
event Borrow(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint256 borrowRateMode,
uint256 borrowRate,
uint16 indexed referral
);
/**
* @dev Emitted on repay()
* @param reserve The address of the underlying asset of the reserve
* @param user The beneficiary of the repayment, getting his debt reduced
* @param repayer The address of the user initiating the repay(), providing the funds
* @param amount The amount repaid
**/
event Repay(
address indexed reserve,
address indexed user,
address indexed repayer,
uint256 amount
);
/**
* @dev Emitted on swapBorrowRateMode()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user swapping his rate mode
* @param rateMode The rate mode that the user wants to swap to
**/
event Swap(address indexed reserve, address indexed user, uint256 rateMode);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
**/
event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
**/
event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on rebalanceStableBorrowRate()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user for which the rebalance has been executed
**/
event RebalanceStableBorrowRate(address indexed reserve, address indexed user);
/**
* @dev Emitted on flashLoan()
* @param target The address of the flash loan receiver contract
* @param initiator The address initiating the flash loan
* @param asset The address of the asset being flash borrowed
* @param amount The amount flash borrowed
* @param premium The fee flash borrowed
* @param referralCode The referral code used
**/
event FlashLoan(
address indexed target,
address indexed initiator,
address indexed asset,
uint256 amount,
uint256 premium,
uint16 referralCode
);
/**
* @dev Emitted when the pause is triggered.
*/
event Paused();
/**
* @dev Emitted when the pause is lifted.
*/
event Unpaused();
/**
* @dev Emitted when a borrower is liquidated. This event is emitted by the LendingPool via
* LendingPoolCollateral manager using a DELEGATECALL
* This allows to have the events in the generated ABI for LendingPool.
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param liquidatedCollateralAmount The amount of collateral received by the liiquidator
* @param liquidator The address of the liquidator
* @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
**/
event LiquidationCall(
address indexed collateralAsset,
address indexed debtAsset,
address indexed user,
uint256 debtToCover,
uint256 liquidatedCollateralAmount,
address liquidator,
bool receiveAToken
);
/**
* @dev Emitted when the state of a reserve is updated. NOTE: This event is actually declared
* in the ReserveLogic library and emitted in the updateInterestRates() function. Since the function is internal,
* the event will actually be fired by the LendingPool contract. The event is therefore replicated here so it
* gets added to the LendingPool ABI
* @param reserve The address of the underlying asset of the reserve
* @param liquidityRate The new liquidity rate
* @param stableBorrowRate The new stable borrow rate
* @param variableBorrowRate The new variable borrow rate
* @param liquidityIndex The new liquidity index
* @param variableBorrowIndex The new variable borrow index
**/
event ReserveDataUpdated(
address indexed reserve,
uint256 liquidityRate,
uint256 stableBorrowRate,
uint256 variableBorrowRate,
uint256 liquidityIndex,
uint256 variableBorrowIndex
);
/**
* @dev Deposits an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User deposits 100 USDC and gets in return 100 aUSDC
* @param asset The address of the underlying asset to deposit
* @param amount The amount to be deposited
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
**/
function deposit(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode
) external;
/**
* @dev Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned
* E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC
* @param asset The address of the underlying asset to withdraw
* @param amount The underlying amount to be withdrawn
* - Send the value type(uint256).max in order to withdraw the whole aToken balance
* @param to Address that will receive the underlying, same as msg.sender if the user
* wants to receive it on his own wallet, or a different address if the beneficiary is a
* different wallet
* @return The final amount withdrawn
**/
function withdraw(
address asset,
uint256 amount,
address to
) external returns (uint256);
/**
* @dev Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower
* already deposited enough collateral, or he was given enough allowance by a credit delegator on the
* corresponding debt token (StableDebtToken or VariableDebtToken)
* - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet
* and 100 stable/variable debt tokens, depending on the `interestRateMode`
* @param asset The address of the underlying asset to borrow
* @param amount The amount to be borrowed
* @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
* @param onBehalfOf Address of the user who will receive the debt. Should be the address of the borrower itself
* calling the function if he wants to borrow against his own collateral, or the address of the credit delegator
* if he has been given credit delegation allowance
**/
function borrow(
address asset,
uint256 amount,
uint256 interestRateMode,
uint16 referralCode,
address onBehalfOf
) external;
/**
* @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned
* - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param rateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable
* @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the
* user calling the function if he wants to reduce/remove his own debt, or the address of any other
* other borrower whose debt should be removed
* @return The final amount repaid
**/
function repay(
address asset,
uint256 amount,
uint256 rateMode,
address onBehalfOf
) external returns (uint256);
/**
* @dev Allows a borrower to swap his debt between stable and variable mode, or viceversa
* @param asset The address of the underlying asset borrowed
* @param rateMode The rate mode that the user wants to swap to
**/
function swapBorrowRateMode(address asset, uint256 rateMode) external;
/**
* @dev Rebalances the stable interest rate of a user to the current stable rate defined on the reserve.
* - Users can be rebalanced if the following conditions are satisfied:
* 1. Usage ratio is above 95%
* 2. the current deposit APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too much has been
* borrowed at a stable rate and depositors are not earning enough
* @param asset The address of the underlying asset borrowed
* @param user The address of the user to be rebalanced
**/
function rebalanceStableBorrowRate(address asset, address user) external;
/**
* @dev Allows depositors to enable/disable a specific deposited asset as collateral
* @param asset The address of the underlying asset deposited
* @param useAsCollateral `true` if the user wants to use the deposit as collateral, `false` otherwise
**/
function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external;
/**
* @dev Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1
* - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
* a proportionally amount of the `collateralAsset` plus a bonus to cover market risk
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
**/
function liquidationCall(
address collateralAsset,
address debtAsset,
address user,
uint256 debtToCover,
bool receiveAToken
) external;
/**
* @dev Allows smartcontracts to access the liquidity of the pool within one transaction,
* as long as the amount taken plus a fee is returned.
* IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept into consideration.
* For further details please visit https://developers.aave.com
* @param receiverAddress The address of the contract receiving the funds, implementing the IFlashLoanReceiver interface
* @param assets The addresses of the assets being flash-borrowed
* @param amounts The amounts amounts being flash-borrowed
* @param modes Types of the debt to open if the flash loan is not returned:
* 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver
* 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2
* @param params Variadic packed params to pass to the receiver as extra information
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
**/
function flashLoan(
address receiverAddress,
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata modes,
address onBehalfOf,
bytes calldata params,
uint16 referralCode
) external;
/**
* @dev Returns the user account data across all the reserves
* @param user The address of the user
* @return totalCollateralETH the total collateral in ETH of the user
* @return totalDebtETH the total debt in ETH of the user
* @return availableBorrowsETH the borrowing power left of the user
* @return currentLiquidationThreshold the liquidation threshold of the user
* @return ltv the loan to value of the user
* @return healthFactor the current health factor of the user
**/
function getUserAccountData(address user)
external
view
returns (
uint256 totalCollateralETH,
uint256 totalDebtETH,
uint256 availableBorrowsETH,
uint256 currentLiquidationThreshold,
uint256 ltv,
uint256 healthFactor
);
function initReserve(
address reserve,
address aTokenAddress,
address stableDebtAddress,
address variableDebtAddress,
address interestRateStrategyAddress
) external;
function setReserveInterestRateStrategyAddress(address reserve, address rateStrategyAddress)
external;
function setConfiguration(address reserve, uint256 configuration) external;
/**
* @dev Returns the configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The configuration of the reserve
**/
function getConfiguration(address asset)
external
view
returns (DataTypes.ReserveConfigurationMap memory);
/**
* @dev Returns the configuration of the user across all the reserves
* @param user The user address
* @return The configuration of the user
**/
function getUserConfiguration(address user)
external
view
returns (DataTypes.UserConfigurationMap memory);
/**
* @dev Returns the normalized income normalized income of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The reserve's normalized income
*/
function getReserveNormalizedIncome(address asset) external view returns (uint256);
/**
* @dev Returns the normalized variable debt per unit of asset
* @param asset The address of the underlying asset of the reserve
* @return The reserve normalized variable debt
*/
function getReserveNormalizedVariableDebt(address asset) external view returns (uint256);
/**
* @dev Returns the state and configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The state of the reserve
**/
function getReserveData(address asset) external view returns (DataTypes.ReserveData memory);
function finalizeTransfer(
address asset,
address from,
address to,
uint256 amount,
uint256 balanceFromAfter,
uint256 balanceToBefore
) external;
function getReservesList() external view returns (address[] memory);
function getAddressesProvider() external view returns (ILendingPoolAddressesProvider);
function setPause(bool val) external;
function paused() external view returns (bool);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @title LendingPoolAddressesProvider contract
* @dev Main registry of addresses part of or connected to the protocol, including permissioned roles
* - Acting also as factory of proxies and admin of those, so with right to change its implementations
* - Owned by the Aave Governance
* @author Aave
**/
interface ILendingPoolAddressesProvider {
event MarketIdSet(string newMarketId);
event LendingPoolUpdated(address indexed newAddress);
event ConfigurationAdminUpdated(address indexed newAddress);
event EmergencyAdminUpdated(address indexed newAddress);
event LendingPoolConfiguratorUpdated(address indexed newAddress);
event LendingPoolCollateralManagerUpdated(address indexed newAddress);
event PriceOracleUpdated(address indexed newAddress);
event LendingRateOracleUpdated(address indexed newAddress);
event ProxyCreated(bytes32 id, address indexed newAddress);
event AddressSet(bytes32 id, address indexed newAddress, bool hasProxy);
function getMarketId() external view returns (string memory);
function setMarketId(string calldata marketId) external;
function setAddress(bytes32 id, address newAddress) external;
function setAddressAsProxy(bytes32 id, address impl) external;
function getAddress(bytes32 id) external view returns (address);
function getLendingPool() external view returns (address);
function setLendingPoolImpl(address pool) external;
function getLendingPoolConfigurator() external view returns (address);
function setLendingPoolConfiguratorImpl(address configurator) external;
function getLendingPoolCollateralManager() external view returns (address);
function setLendingPoolCollateralManager(address manager) external;
function getPoolAdmin() external view returns (address);
function setPoolAdmin(address admin) external;
function getEmergencyAdmin() external view returns (address);
function setEmergencyAdmin(address admin) external;
function getPriceOracle() external view returns (address);
function setPriceOracle(address priceOracle) external;
function getLendingRateOracle() external view returns (address);
function setLendingRateOracle(address lendingRateOracle) external;
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @title IReserveInterestRateStrategyInterface interface
* @dev Interface for the calculation of the interest rates
* @author Aave
*/
interface IReserveInterestRateStrategy {
function baseVariableBorrowRate() external view returns (uint256);
function getMaxVariableBorrowRate() external view returns (uint256);
function calculateInterestRates(
address reserve,
uint256 availableLiquidity,
uint256 totalStableDebt,
uint256 totalVariableDebt,
uint256 averageStableBorrowRate,
uint256 reserveFactor
)
external
view
returns (
uint256,
uint256,
uint256
);
function calculateInterestRates(
address reserve,
address aToken,
uint256 liquidityAdded,
uint256 liquidityTaken,
uint256 totalStableDebt,
uint256 totalVariableDebt,
uint256 averageStableBorrowRate,
uint256 reserveFactor
)
external
view
returns (
uint256 liquidityRate,
uint256 stableBorrowRate,
uint256 variableBorrowRate
);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
interface IScaledBalanceToken {
/**
* @dev Returns the scaled balance of the user. The scaled balance is the sum of all the
* updated stored balance divided by the reserve's liquidity index at the moment of the update
* @param user The user whose balance is calculated
* @return The scaled balance of the user
**/
function scaledBalanceOf(address user) external view returns (uint256);
/**
* @dev Returns the scaled balance of the user and the scaled total supply.
* @param user The address of the user
* @return The scaled balance of the user
* @return The scaled balance and the scaled total supply
**/
function getScaledUserBalanceAndSupply(address user) external view returns (uint256, uint256);
/**
* @dev Returns the scaled total supply of the variable debt token. Represents sum(debt/index)
* @return The scaled total supply
**/
function scaledTotalSupply() external view returns (uint256);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {IInitializableDebtToken} from './IInitializableDebtToken.sol';
import {IAaveIncentivesController} from './IAaveIncentivesController.sol';
/**
* @title IStableDebtToken
* @notice Defines the interface for the stable debt token
* @dev It does not inherit from IERC20 to save in code size
* @author Aave
**/
interface IStableDebtToken is IInitializableDebtToken {
/**
* @dev Emitted when new stable debt is minted
* @param user The address of the user who triggered the minting
* @param onBehalfOf The recipient of stable debt tokens
* @param amount The amount minted
* @param currentBalance The current balance of the user
* @param balanceIncrease The increase in balance since the last action of the user
* @param newRate The rate of the debt after the minting
* @param avgStableRate The new average stable rate after the minting
* @param newTotalSupply The new total supply of the stable debt token after the action
**/
event Mint(
address indexed user,
address indexed onBehalfOf,
uint256 amount,
uint256 currentBalance,
uint256 balanceIncrease,
uint256 newRate,
uint256 avgStableRate,
uint256 newTotalSupply
);
/**
* @dev Emitted when new stable debt is burned
* @param user The address of the user
* @param amount The amount being burned
* @param currentBalance The current balance of the user
* @param balanceIncrease The the increase in balance since the last action of the user
* @param avgStableRate The new average stable rate after the burning
* @param newTotalSupply The new total supply of the stable debt token after the action
**/
event Burn(
address indexed user,
uint256 amount,
uint256 currentBalance,
uint256 balanceIncrease,
uint256 avgStableRate,
uint256 newTotalSupply
);
/**
* @dev Mints debt token to the `onBehalfOf` address.
* - The resulting rate is the weighted average between the rate of the new debt
* and the rate of the previous debt
* @param user The address receiving the borrowed underlying, being the delegatee in case
* of credit delegate, or same as `onBehalfOf` otherwise
* @param onBehalfOf The address receiving the debt tokens
* @param amount The amount of debt tokens to mint
* @param rate The rate of the debt being minted
**/
function mint(
address user,
address onBehalfOf,
uint256 amount,
uint256 rate
) external returns (bool);
/**
* @dev Burns debt of `user`
* - The resulting rate is the weighted average between the rate of the new debt
* and the rate of the previous debt
* @param user The address of the user getting his debt burned
* @param amount The amount of debt tokens getting burned
**/
function burn(address user, uint256 amount) external;
/**
* @dev Returns the average rate of all the stable rate loans.
* @return The average stable rate
**/
function getAverageStableRate() external view returns (uint256);
/**
* @dev Returns the stable rate of the user debt
* @return The stable rate of the user
**/
function getUserStableRate(address user) external view returns (uint256);
/**
* @dev Returns the timestamp of the last update of the user
* @return The timestamp
**/
function getUserLastUpdated(address user) external view returns (uint40);
/**
* @dev Returns the principal, the total supply and the average stable rate
**/
function getSupplyData()
external
view
returns (
uint256,
uint256,
uint256,
uint40
);
/**
* @dev Returns the timestamp of the last update of the total supply
* @return The timestamp
**/
function getTotalSupplyLastUpdated() external view returns (uint40);
/**
* @dev Returns the total supply and the average stable rate
**/
function getTotalSupplyAndAvgRate() external view returns (uint256, uint256);
/**
* @dev Returns the principal debt balance of the user
* @return The debt balance of the user since the last burn/mint action
**/
function principalBalanceOf(address user) external view returns (uint256);
/**
* @dev Returns the address of the incentives controller contract
**/
function getIncentivesController() external view returns (IAaveIncentivesController);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {IScaledBalanceToken} from './IScaledBalanceToken.sol';
import {IInitializableDebtToken} from './IInitializableDebtToken.sol';
import {IAaveIncentivesController} from './IAaveIncentivesController.sol';
/**
* @title IVariableDebtToken
* @author Aave
* @notice Defines the basic interface for a variable debt token.
**/
interface IVariableDebtToken is IScaledBalanceToken, IInitializableDebtToken {
/**
* @dev Emitted after the mint action
* @param from The address performing the mint
* @param onBehalfOf The address of the user on which behalf minting has been performed
* @param value The amount to be minted
* @param index The last index of the reserve
**/
event Mint(address indexed from, address indexed onBehalfOf, uint256 value, uint256 index);
/**
* @dev Mints debt token to the `onBehalfOf` address
* @param user The address receiving the borrowed underlying, being the delegatee in case
* of credit delegate, or same as `onBehalfOf` otherwise
* @param onBehalfOf The address receiving the debt tokens
* @param amount The amount of debt being minted
* @param index The variable debt index of the reserve
* @return `true` if the the previous balance of the user is 0
**/
function mint(
address user,
address onBehalfOf,
uint256 amount,
uint256 index
) external returns (bool);
/**
* @dev Emitted when variable debt is burnt
* @param user The user which debt has been burned
* @param amount The amount of debt being burned
* @param index The index of the user
**/
event Burn(address indexed user, uint256 amount, uint256 index);
/**
* @dev Burns user variable debt
* @param user The user which debt is burnt
* @param index The variable debt index of the reserve
**/
function burn(
address user,
uint256 amount,
uint256 index
) external;
/**
* @dev Returns the address of the incentives controller contract
**/
function getIncentivesController() external view returns (IAaveIncentivesController);
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {Errors} from '../helpers/Errors.sol';
import {DataTypes} from '../types/DataTypes.sol';
/**
* @title ReserveConfiguration library
* @author Aave
* @notice Implements the bitmap logic to handle the reserve configuration
*/
library ReserveConfiguration {
uint256 constant LTV_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // prettier-ignore
uint256 constant LIQUIDATION_THRESHOLD_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFF; // prettier-ignore
uint256 constant LIQUIDATION_BONUS_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFFFFFF; // prettier-ignore
uint256 constant DECIMALS_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00FFFFFFFFFFFF; // prettier-ignore
uint256 constant ACTIVE_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFF; // prettier-ignore
uint256 constant FROZEN_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFFFFFFFFFFFFFF; // prettier-ignore
uint256 constant BORROWING_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFF; // prettier-ignore
uint256 constant STABLE_BORROWING_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFFFFF; // prettier-ignore
uint256 constant RESERVE_FACTOR_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFFFFFFFFFFFFFF; // prettier-ignore
/// @dev For the LTV, the start bit is 0 (up to 15), hence no bitshifting is needed
uint256 constant LIQUIDATION_THRESHOLD_START_BIT_POSITION = 16;
uint256 constant LIQUIDATION_BONUS_START_BIT_POSITION = 32;
uint256 constant RESERVE_DECIMALS_START_BIT_POSITION = 48;
uint256 constant IS_ACTIVE_START_BIT_POSITION = 56;
uint256 constant IS_FROZEN_START_BIT_POSITION = 57;
uint256 constant BORROWING_ENABLED_START_BIT_POSITION = 58;
uint256 constant STABLE_BORROWING_ENABLED_START_BIT_POSITION = 59;
uint256 constant RESERVE_FACTOR_START_BIT_POSITION = 64;
uint256 constant MAX_VALID_LTV = 65535;
uint256 constant MAX_VALID_LIQUIDATION_THRESHOLD = 65535;
uint256 constant MAX_VALID_LIQUIDATION_BONUS = 65535;
uint256 constant MAX_VALID_DECIMALS = 255;
uint256 constant MAX_VALID_RESERVE_FACTOR = 65535;
/**
* @dev Sets the Loan to Value of the reserve
* @param self The reserve configuration
* @param ltv the new ltv
**/
function setLtv(DataTypes.ReserveConfigurationMap memory self, uint256 ltv) internal pure {
require(ltv <= MAX_VALID_LTV, Errors.RC_INVALID_LTV);
self.data = (self.data & LTV_MASK) | ltv;
}
/**
* @dev Gets the Loan to Value of the reserve
* @param self The reserve configuration
* @return The loan to value
**/
function getLtv(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) {
return self.data & ~LTV_MASK;
}
/**
* @dev Sets the liquidation threshold of the reserve
* @param self The reserve configuration
* @param threshold The new liquidation threshold
**/
function setLiquidationThreshold(DataTypes.ReserveConfigurationMap memory self, uint256 threshold)
internal
pure
{
require(threshold <= MAX_VALID_LIQUIDATION_THRESHOLD, Errors.RC_INVALID_LIQ_THRESHOLD);
self.data =
(self.data & LIQUIDATION_THRESHOLD_MASK) |
(threshold << LIQUIDATION_THRESHOLD_START_BIT_POSITION);
}
/**
* @dev Gets the liquidation threshold of the reserve
* @param self The reserve configuration
* @return The liquidation threshold
**/
function getLiquidationThreshold(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (uint256)
{
return (self.data & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION;
}
/**
* @dev Sets the liquidation bonus of the reserve
* @param self The reserve configuration
* @param bonus The new liquidation bonus
**/
function setLiquidationBonus(DataTypes.ReserveConfigurationMap memory self, uint256 bonus)
internal
pure
{
require(bonus <= MAX_VALID_LIQUIDATION_BONUS, Errors.RC_INVALID_LIQ_BONUS);
self.data =
(self.data & LIQUIDATION_BONUS_MASK) |
(bonus << LIQUIDATION_BONUS_START_BIT_POSITION);
}
/**
* @dev Gets the liquidation bonus of the reserve
* @param self The reserve configuration
* @return The liquidation bonus
**/
function getLiquidationBonus(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (uint256)
{
return (self.data & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION;
}
/**
* @dev Sets the decimals of the underlying asset of the reserve
* @param self The reserve configuration
* @param decimals The decimals
**/
function setDecimals(DataTypes.ReserveConfigurationMap memory self, uint256 decimals)
internal
pure
{
require(decimals <= MAX_VALID_DECIMALS, Errors.RC_INVALID_DECIMALS);
self.data = (self.data & DECIMALS_MASK) | (decimals << RESERVE_DECIMALS_START_BIT_POSITION);
}
/**
* @dev Gets the decimals of the underlying asset of the reserve
* @param self The reserve configuration
* @return The decimals of the asset
**/
function getDecimals(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (uint256)
{
return (self.data & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION;
}
/**
* @dev Sets the active state of the reserve
* @param self The reserve configuration
* @param active The active state
**/
function setActive(DataTypes.ReserveConfigurationMap memory self, bool active) internal pure {
self.data =
(self.data & ACTIVE_MASK) |
(uint256(active ? 1 : 0) << IS_ACTIVE_START_BIT_POSITION);
}
/**
* @dev Gets the active state of the reserve
* @param self The reserve configuration
* @return The active state
**/
function getActive(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) {
return (self.data & ~ACTIVE_MASK) != 0;
}
/**
* @dev Sets the frozen state of the reserve
* @param self The reserve configuration
* @param frozen The frozen state
**/
function setFrozen(DataTypes.ReserveConfigurationMap memory self, bool frozen) internal pure {
self.data =
(self.data & FROZEN_MASK) |
(uint256(frozen ? 1 : 0) << IS_FROZEN_START_BIT_POSITION);
}
/**
* @dev Gets the frozen state of the reserve
* @param self The reserve configuration
* @return The frozen state
**/
function getFrozen(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) {
return (self.data & ~FROZEN_MASK) != 0;
}
/**
* @dev Enables or disables borrowing on the reserve
* @param self The reserve configuration
* @param enabled True if the borrowing needs to be enabled, false otherwise
**/
function setBorrowingEnabled(DataTypes.ReserveConfigurationMap memory self, bool enabled)
internal
pure
{
self.data =
(self.data & BORROWING_MASK) |
(uint256(enabled ? 1 : 0) << BORROWING_ENABLED_START_BIT_POSITION);
}
/**
* @dev Gets the borrowing state of the reserve
* @param self The reserve configuration
* @return The borrowing state
**/
function getBorrowingEnabled(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (bool)
{
return (self.data & ~BORROWING_MASK) != 0;
}
/**
* @dev Enables or disables stable rate borrowing on the reserve
* @param self The reserve configuration
* @param enabled True if the stable rate borrowing needs to be enabled, false otherwise
**/
function setStableRateBorrowingEnabled(
DataTypes.ReserveConfigurationMap memory self,
bool enabled
) internal pure {
self.data =
(self.data & STABLE_BORROWING_MASK) |
(uint256(enabled ? 1 : 0) << STABLE_BORROWING_ENABLED_START_BIT_POSITION);
}
/**
* @dev Gets the stable rate borrowing state of the reserve
* @param self The reserve configuration
* @return The stable rate borrowing state
**/
function getStableRateBorrowingEnabled(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (bool)
{
return (self.data & ~STABLE_BORROWING_MASK) != 0;
}
/**
* @dev Sets the reserve factor of the reserve
* @param self The reserve configuration
* @param reserveFactor The reserve factor
**/
function setReserveFactor(DataTypes.ReserveConfigurationMap memory self, uint256 reserveFactor)
internal
pure
{
require(reserveFactor <= MAX_VALID_RESERVE_FACTOR, Errors.RC_INVALID_RESERVE_FACTOR);
self.data =
(self.data & RESERVE_FACTOR_MASK) |
(reserveFactor << RESERVE_FACTOR_START_BIT_POSITION);
}
/**
* @dev Gets the reserve factor of the reserve
* @param self The reserve configuration
* @return The reserve factor
**/
function getReserveFactor(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (uint256)
{
return (self.data & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION;
}
/**
* @dev Gets the configuration flags of the reserve
* @param self The reserve configuration
* @return The state flags representing active, frozen, borrowing enabled, stableRateBorrowing enabled
**/
function getFlags(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (
bool,
bool,
bool,
bool
)
{
uint256 dataLocal = self.data;
return (
(dataLocal & ~ACTIVE_MASK) != 0,
(dataLocal & ~FROZEN_MASK) != 0,
(dataLocal & ~BORROWING_MASK) != 0,
(dataLocal & ~STABLE_BORROWING_MASK) != 0
);
}
/**
* @dev Gets the configuration paramters of the reserve
* @param self The reserve configuration
* @return The state params representing ltv, liquidation threshold, liquidation bonus, the reserve decimals
**/
function getParams(DataTypes.ReserveConfigurationMap storage self)
internal
view
returns (
uint256,
uint256,
uint256,
uint256,
uint256
)
{
uint256 dataLocal = self.data;
return (
dataLocal & ~LTV_MASK,
(dataLocal & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION,
(dataLocal & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION,
(dataLocal & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION,
(dataLocal & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION
);
}
/**
* @dev Gets the configuration paramters of the reserve from a memory object
* @param self The reserve configuration
* @return The state params representing ltv, liquidation threshold, liquidation bonus, the reserve decimals
**/
function getParamsMemory(DataTypes.ReserveConfigurationMap memory self)
internal
pure
returns (
uint256,
uint256,
uint256,
uint256,
uint256
)
{
return (
self.data & ~LTV_MASK,
(self.data & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION,
(self.data & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION,
(self.data & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION,
(self.data & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION
);
}
/**
* @dev Gets the configuration flags of the reserve from a memory object
* @param self The reserve configuration
* @return The state flags representing active, frozen, borrowing enabled, stableRateBorrowing enabled
**/
function getFlagsMemory(DataTypes.ReserveConfigurationMap memory self)
internal
pure
returns (
bool,
bool,
bool,
bool
)
{
return (
(self.data & ~ACTIVE_MASK) != 0,
(self.data & ~FROZEN_MASK) != 0,
(self.data & ~BORROWING_MASK) != 0,
(self.data & ~STABLE_BORROWING_MASK) != 0
);
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
/**
* @title Errors library
* @author Aave
* @notice Defines the error messages emitted by the different contracts of the Aave protocol
* @dev Error messages prefix glossary:
* - VL = ValidationLogic
* - MATH = Math libraries
* - CT = Common errors between tokens (AToken, VariableDebtToken and StableDebtToken)
* - AT = AToken
* - SDT = StableDebtToken
* - VDT = VariableDebtToken
* - LP = LendingPool
* - LPAPR = LendingPoolAddressesProviderRegistry
* - LPC = LendingPoolConfiguration
* - RL = ReserveLogic
* - LPCM = LendingPoolCollateralManager
* - P = Pausable
*/
library Errors {
//common errors
string public constant CALLER_NOT_POOL_ADMIN = '33'; // 'The caller must be the pool admin'
string public constant BORROW_ALLOWANCE_NOT_ENOUGH = '59'; // User borrows on behalf, but allowance are too small
//contract specific errors
string public constant VL_INVALID_AMOUNT = '1'; // 'Amount must be greater than 0'
string public constant VL_NO_ACTIVE_RESERVE = '2'; // 'Action requires an active reserve'
string public constant VL_RESERVE_FROZEN = '3'; // 'Action cannot be performed because the reserve is frozen'
string public constant VL_CURRENT_AVAILABLE_LIQUIDITY_NOT_ENOUGH = '4'; // 'The current liquidity is not enough'
string public constant VL_NOT_ENOUGH_AVAILABLE_USER_BALANCE = '5'; // 'User cannot withdraw more than the available balance'
string public constant VL_TRANSFER_NOT_ALLOWED = '6'; // 'Transfer cannot be allowed.'
string public constant VL_BORROWING_NOT_ENABLED = '7'; // 'Borrowing is not enabled'
string public constant VL_INVALID_INTEREST_RATE_MODE_SELECTED = '8'; // 'Invalid interest rate mode selected'
string public constant VL_COLLATERAL_BALANCE_IS_0 = '9'; // 'The collateral balance is 0'
string public constant VL_HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD = '10'; // 'Health factor is lesser than the liquidation threshold'
string public constant VL_COLLATERAL_CANNOT_COVER_NEW_BORROW = '11'; // 'There is not enough collateral to cover a new borrow'
string public constant VL_STABLE_BORROWING_NOT_ENABLED = '12'; // stable borrowing not enabled
string public constant VL_COLLATERAL_SAME_AS_BORROWING_CURRENCY = '13'; // collateral is (mostly) the same currency that is being borrowed
string public constant VL_AMOUNT_BIGGER_THAN_MAX_LOAN_SIZE_STABLE = '14'; // 'The requested amount is greater than the max loan size in stable rate mode
string public constant VL_NO_DEBT_OF_SELECTED_TYPE = '15'; // 'for repayment of stable debt, the user needs to have stable debt, otherwise, he needs to have variable debt'
string public constant VL_NO_EXPLICIT_AMOUNT_TO_REPAY_ON_BEHALF = '16'; // 'To repay on behalf of an user an explicit amount to repay is needed'
string public constant VL_NO_STABLE_RATE_LOAN_IN_RESERVE = '17'; // 'User does not have a stable rate loan in progress on this reserve'
string public constant VL_NO_VARIABLE_RATE_LOAN_IN_RESERVE = '18'; // 'User does not have a variable rate loan in progress on this reserve'
string public constant VL_UNDERLYING_BALANCE_NOT_GREATER_THAN_0 = '19'; // 'The underlying balance needs to be greater than 0'
string public constant VL_DEPOSIT_ALREADY_IN_USE = '20'; // 'User deposit is already being used as collateral'
string public constant LP_NOT_ENOUGH_STABLE_BORROW_BALANCE = '21'; // 'User does not have any stable rate loan for this reserve'
string public constant LP_INTEREST_RATE_REBALANCE_CONDITIONS_NOT_MET = '22'; // 'Interest rate rebalance conditions were not met'
string public constant LP_LIQUIDATION_CALL_FAILED = '23'; // 'Liquidation call failed'
string public constant LP_NOT_ENOUGH_LIQUIDITY_TO_BORROW = '24'; // 'There is not enough liquidity available to borrow'
string public constant LP_REQUESTED_AMOUNT_TOO_SMALL = '25'; // 'The requested amount is too small for a FlashLoan.'
string public constant LP_INCONSISTENT_PROTOCOL_ACTUAL_BALANCE = '26'; // 'The actual balance of the protocol is inconsistent'
string public constant LP_CALLER_NOT_LENDING_POOL_CONFIGURATOR = '27'; // 'The caller of the function is not the lending pool configurator'
string public constant LP_INCONSISTENT_FLASHLOAN_PARAMS = '28';
string public constant CT_CALLER_MUST_BE_LENDING_POOL = '29'; // 'The caller of this function must be a lending pool'
string public constant CT_CANNOT_GIVE_ALLOWANCE_TO_HIMSELF = '30'; // 'User cannot give allowance to himself'
string public constant CT_TRANSFER_AMOUNT_NOT_GT_0 = '31'; // 'Transferred amount needs to be greater than zero'
string public constant RL_RESERVE_ALREADY_INITIALIZED = '32'; // 'Reserve has already been initialized'
string public constant LPC_RESERVE_LIQUIDITY_NOT_0 = '34'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_ATOKEN_POOL_ADDRESS = '35'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_STABLE_DEBT_TOKEN_POOL_ADDRESS = '36'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_VARIABLE_DEBT_TOKEN_POOL_ADDRESS = '37'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_STABLE_DEBT_TOKEN_UNDERLYING_ADDRESS = '38'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_VARIABLE_DEBT_TOKEN_UNDERLYING_ADDRESS = '39'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_ADDRESSES_PROVIDER_ID = '40'; // 'The liquidity of the reserve needs to be 0'
string public constant LPC_INVALID_CONFIGURATION = '75'; // 'Invalid risk parameters for the reserve'
string public constant LPC_CALLER_NOT_EMERGENCY_ADMIN = '76'; // 'The caller must be the emergency admin'
string public constant LPAPR_PROVIDER_NOT_REGISTERED = '41'; // 'Provider is not registered'
string public constant LPCM_HEALTH_FACTOR_NOT_BELOW_THRESHOLD = '42'; // 'Health factor is not below the threshold'
string public constant LPCM_COLLATERAL_CANNOT_BE_LIQUIDATED = '43'; // 'The collateral chosen cannot be liquidated'
string public constant LPCM_SPECIFIED_CURRENCY_NOT_BORROWED_BY_USER = '44'; // 'User did not borrow the specified currency'
string public constant LPCM_NOT_ENOUGH_LIQUIDITY_TO_LIQUIDATE = '45'; // "There isn't enough liquidity available to liquidate"
string public constant LPCM_NO_ERRORS = '46'; // 'No errors'
string public constant LP_INVALID_FLASHLOAN_MODE = '47'; //Invalid flashloan mode selected
string public constant MATH_MULTIPLICATION_OVERFLOW = '48';
string public constant MATH_ADDITION_OVERFLOW = '49';
string public constant MATH_DIVISION_BY_ZERO = '50';
string public constant RL_LIQUIDITY_INDEX_OVERFLOW = '51'; // Liquidity index overflows uint128
string public constant RL_VARIABLE_BORROW_INDEX_OVERFLOW = '52'; // Variable borrow index overflows uint128
string public constant RL_LIQUIDITY_RATE_OVERFLOW = '53'; // Liquidity rate overflows uint128
string public constant RL_VARIABLE_BORROW_RATE_OVERFLOW = '54'; // Variable borrow rate overflows uint128
string public constant RL_STABLE_BORROW_RATE_OVERFLOW = '55'; // Stable borrow rate overflows uint128
string public constant CT_INVALID_MINT_AMOUNT = '56'; //invalid amount to mint
string public constant LP_FAILED_REPAY_WITH_COLLATERAL = '57';
string public constant CT_INVALID_BURN_AMOUNT = '58'; //invalid amount to burn
string public constant LP_FAILED_COLLATERAL_SWAP = '60';
string public constant LP_INVALID_EQUAL_ASSETS_TO_SWAP = '61';
string public constant LP_REENTRANCY_NOT_ALLOWED = '62';
string public constant LP_CALLER_MUST_BE_AN_ATOKEN = '63';
string public constant LP_IS_PAUSED = '64'; // 'Pool is paused'
string public constant LP_NO_MORE_RESERVES_ALLOWED = '65';
string public constant LP_INVALID_FLASH_LOAN_EXECUTOR_RETURN = '66';
string public constant RC_INVALID_LTV = '67';
string public constant RC_INVALID_LIQ_THRESHOLD = '68';
string public constant RC_INVALID_LIQ_BONUS = '69';
string public constant RC_INVALID_DECIMALS = '70';
string public constant RC_INVALID_RESERVE_FACTOR = '71';
string public constant LPAPR_INVALID_ADDRESSES_PROVIDER_ID = '72';
string public constant VL_INCONSISTENT_FLASHLOAN_PARAMS = '73';
string public constant LP_INCONSISTENT_PARAMS_LENGTH = '74';
string public constant UL_INVALID_INDEX = '77';
string public constant LP_NOT_CONTRACT = '78';
string public constant SDT_STABLE_DEBT_OVERFLOW = '79';
string public constant SDT_BURN_EXCEEDS_BALANCE = '80';
enum CollateralManagerErrors {
NO_ERROR,
NO_COLLATERAL_AVAILABLE,
COLLATERAL_CANNOT_BE_LIQUIDATED,
CURRRENCY_NOT_BORROWED,
HEALTH_FACTOR_ABOVE_THRESHOLD,
NOT_ENOUGH_LIQUIDITY,
NO_ACTIVE_RESERVE,
HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD,
INVALID_EQUAL_ASSETS_TO_SWAP,
FROZEN_RESERVE
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {SafeMath} from '../../../dependencies/openzeppelin/contracts/SafeMath.sol';
import {IERC20} from '../../../dependencies/openzeppelin/contracts/IERC20.sol';
import {SafeERC20} from '../../../dependencies/openzeppelin/contracts/SafeERC20.sol';
import {IAToken} from '../../../interfaces/IAToken.sol';
import {IStableDebtToken} from '../../../interfaces/IStableDebtToken.sol';
import {IVariableDebtToken} from '../../../interfaces/IVariableDebtToken.sol';
import {IReserveInterestRateStrategy} from '../../../interfaces/IReserveInterestRateStrategy.sol';
import {ReserveConfiguration} from '../configuration/ReserveConfiguration.sol';
import {MathUtils} from '../math/MathUtils.sol';
import {WadRayMath} from '../math/WadRayMath.sol';
import {PercentageMath} from '../math/PercentageMath.sol';
import {Errors} from '../helpers/Errors.sol';
import {DataTypes} from '../types/DataTypes.sol';
/**
* @title ReserveLogic library
* @author Aave
* @notice Implements the logic to update the reserves state
*/
library ReserveLogic {
using SafeMath for uint256;
using WadRayMath for uint256;
using PercentageMath for uint256;
using SafeERC20 for IERC20;
/**
* @dev Emitted when the state of a reserve is updated
* @param asset The address of the underlying asset of the reserve
* @param liquidityRate The new liquidity rate
* @param stableBorrowRate The new stable borrow rate
* @param variableBorrowRate The new variable borrow rate
* @param liquidityIndex The new liquidity index
* @param variableBorrowIndex The new variable borrow index
**/
event ReserveDataUpdated(
address indexed asset,
uint256 liquidityRate,
uint256 stableBorrowRate,
uint256 variableBorrowRate,
uint256 liquidityIndex,
uint256 variableBorrowIndex
);
using ReserveLogic for DataTypes.ReserveData;
using ReserveConfiguration for DataTypes.ReserveConfigurationMap;
/**
* @dev Returns the ongoing normalized income for the reserve
* A value of 1e27 means there is no income. As time passes, the income is accrued
* A value of 2*1e27 means for each unit of asset one unit of income has been accrued
* @param reserve The reserve object
* @return the normalized income. expressed in ray
**/
function getNormalizedIncome(DataTypes.ReserveData storage reserve)
internal
view
returns (uint256)
{
uint40 timestamp = reserve.lastUpdateTimestamp;
//solium-disable-next-line
if (timestamp == uint40(block.timestamp)) {
//if the index was updated in the same block, no need to perform any calculation
return reserve.liquidityIndex;
}
uint256 cumulated =
MathUtils.calculateLinearInterest(reserve.currentLiquidityRate, timestamp).rayMul(
reserve.liquidityIndex
);
return cumulated;
}
/**
* @dev Returns the ongoing normalized variable debt for the reserve
* A value of 1e27 means there is no debt. As time passes, the income is accrued
* A value of 2*1e27 means that for each unit of debt, one unit worth of interest has been accumulated
* @param reserve The reserve object
* @return The normalized variable debt. expressed in ray
**/
function getNormalizedDebt(DataTypes.ReserveData storage reserve)
internal
view
returns (uint256)
{
uint40 timestamp = reserve.lastUpdateTimestamp;
//solium-disable-next-line
if (timestamp == uint40(block.timestamp)) {
//if the index was updated in the same block, no need to perform any calculation
return reserve.variableBorrowIndex;
}
uint256 cumulated =
MathUtils.calculateCompoundedInterest(reserve.currentVariableBorrowRate, timestamp).rayMul(
reserve.variableBorrowIndex
);
return cumulated;
}
/**
* @dev Updates the liquidity cumulative index and the variable borrow index.
* @param reserve the reserve object
**/
function updateState(DataTypes.ReserveData storage reserve) internal {
uint256 scaledVariableDebt =
IVariableDebtToken(reserve.variableDebtTokenAddress).scaledTotalSupply();
uint256 previousVariableBorrowIndex = reserve.variableBorrowIndex;
uint256 previousLiquidityIndex = reserve.liquidityIndex;
uint40 lastUpdatedTimestamp = reserve.lastUpdateTimestamp;
(uint256 newLiquidityIndex, uint256 newVariableBorrowIndex) =
_updateIndexes(
reserve,
scaledVariableDebt,
previousLiquidityIndex,
previousVariableBorrowIndex,
lastUpdatedTimestamp
);
_mintToTreasury(
reserve,
scaledVariableDebt,
previousVariableBorrowIndex,
newLiquidityIndex,
newVariableBorrowIndex,
lastUpdatedTimestamp
);
}
/**
* @dev Accumulates a predefined amount of asset to the reserve as a fixed, instantaneous income. Used for example to accumulate
* the flashloan fee to the reserve, and spread it between all the depositors
* @param reserve The reserve object
* @param totalLiquidity The total liquidity available in the reserve
* @param amount The amount to accomulate
**/
function cumulateToLiquidityIndex(
DataTypes.ReserveData storage reserve,
uint256 totalLiquidity,
uint256 amount
) internal {
uint256 amountToLiquidityRatio = amount.wadToRay().rayDiv(totalLiquidity.wadToRay());
uint256 result = amountToLiquidityRatio.add(WadRayMath.ray());
result = result.rayMul(reserve.liquidityIndex);
require(result <= type(uint128).max, Errors.RL_LIQUIDITY_INDEX_OVERFLOW);
reserve.liquidityIndex = uint128(result);
}
/**
* @dev Initializes a reserve
* @param reserve The reserve object
* @param aTokenAddress The address of the overlying atoken contract
* @param interestRateStrategyAddress The address of the interest rate strategy contract
**/
function init(
DataTypes.ReserveData storage reserve,
address aTokenAddress,
address stableDebtTokenAddress,
address variableDebtTokenAddress,
address interestRateStrategyAddress
) external {
require(reserve.aTokenAddress == address(0), Errors.RL_RESERVE_ALREADY_INITIALIZED);
reserve.liquidityIndex = uint128(WadRayMath.ray());
reserve.variableBorrowIndex = uint128(WadRayMath.ray());
reserve.aTokenAddress = aTokenAddress;
reserve.stableDebtTokenAddress = stableDebtTokenAddress;
reserve.variableDebtTokenAddress = variableDebtTokenAddress;
reserve.interestRateStrategyAddress = interestRateStrategyAddress;
}
struct UpdateInterestRatesLocalVars {
address stableDebtTokenAddress;
uint256 availableLiquidity;
uint256 totalStableDebt;
uint256 newLiquidityRate;
uint256 newStableRate;
uint256 newVariableRate;
uint256 avgStableRate;
uint256 totalVariableDebt;
}
/**
* @dev Updates the reserve current stable borrow rate, the current variable borrow rate and the current liquidity rate
* @param reserve The address of the reserve to be updated
* @param liquidityAdded The amount of liquidity added to the protocol (deposit or repay) in the previous action
* @param liquidityTaken The amount of liquidity taken from the protocol (redeem or borrow)
**/
function updateInterestRates(
DataTypes.ReserveData storage reserve,
address reserveAddress,
address aTokenAddress,
uint256 liquidityAdded,
uint256 liquidityTaken
) internal {
UpdateInterestRatesLocalVars memory vars;
vars.stableDebtTokenAddress = reserve.stableDebtTokenAddress;
(vars.totalStableDebt, vars.avgStableRate) = IStableDebtToken(vars.stableDebtTokenAddress)
.getTotalSupplyAndAvgRate();
//calculates the total variable debt locally using the scaled total supply instead
//of totalSupply(), as it's noticeably cheaper. Also, the index has been
//updated by the previous updateState() call
vars.totalVariableDebt = IVariableDebtToken(reserve.variableDebtTokenAddress)
.scaledTotalSupply()
.rayMul(reserve.variableBorrowIndex);
(
vars.newLiquidityRate,
vars.newStableRate,
vars.newVariableRate
) = IReserveInterestRateStrategy(reserve.interestRateStrategyAddress).calculateInterestRates(
reserveAddress,
aTokenAddress,
liquidityAdded,
liquidityTaken,
vars.totalStableDebt,
vars.totalVariableDebt,
vars.avgStableRate,
reserve.configuration.getReserveFactor()
);
require(vars.newLiquidityRate <= type(uint128).max, Errors.RL_LIQUIDITY_RATE_OVERFLOW);
require(vars.newStableRate <= type(uint128).max, Errors.RL_STABLE_BORROW_RATE_OVERFLOW);
require(vars.newVariableRate <= type(uint128).max, Errors.RL_VARIABLE_BORROW_RATE_OVERFLOW);
reserve.currentLiquidityRate = uint128(vars.newLiquidityRate);
reserve.currentStableBorrowRate = uint128(vars.newStableRate);
reserve.currentVariableBorrowRate = uint128(vars.newVariableRate);
emit ReserveDataUpdated(
reserveAddress,
vars.newLiquidityRate,
vars.newStableRate,
vars.newVariableRate,
reserve.liquidityIndex,
reserve.variableBorrowIndex
);
}
struct MintToTreasuryLocalVars {
uint256 currentStableDebt;
uint256 principalStableDebt;
uint256 previousStableDebt;
uint256 currentVariableDebt;
uint256 previousVariableDebt;
uint256 avgStableRate;
uint256 cumulatedStableInterest;
uint256 totalDebtAccrued;
uint256 amountToMint;
uint256 reserveFactor;
uint40 stableSupplyUpdatedTimestamp;
}
/**
* @dev Mints part of the repaid interest to the reserve treasury as a function of the reserveFactor for the
* specific asset.
* @param reserve The reserve reserve to be updated
* @param scaledVariableDebt The current scaled total variable debt
* @param previousVariableBorrowIndex The variable borrow index before the last accumulation of the interest
* @param newLiquidityIndex The new liquidity index
* @param newVariableBorrowIndex The variable borrow index after the last accumulation of the interest
**/
function _mintToTreasury(
DataTypes.ReserveData storage reserve,
uint256 scaledVariableDebt,
uint256 previousVariableBorrowIndex,
uint256 newLiquidityIndex,
uint256 newVariableBorrowIndex,
uint40 timestamp
) internal {
MintToTreasuryLocalVars memory vars;
vars.reserveFactor = reserve.configuration.getReserveFactor();
if (vars.reserveFactor == 0) {
return;
}
//fetching the principal, total stable debt and the avg stable rate
(
vars.principalStableDebt,
vars.currentStableDebt,
vars.avgStableRate,
vars.stableSupplyUpdatedTimestamp
) = IStableDebtToken(reserve.stableDebtTokenAddress).getSupplyData();
//calculate the last principal variable debt
vars.previousVariableDebt = scaledVariableDebt.rayMul(previousVariableBorrowIndex);
//calculate the new total supply after accumulation of the index
vars.currentVariableDebt = scaledVariableDebt.rayMul(newVariableBorrowIndex);
//calculate the stable debt until the last timestamp update
vars.cumulatedStableInterest = MathUtils.calculateCompoundedInterest(
vars.avgStableRate,
vars.stableSupplyUpdatedTimestamp,
timestamp
);
vars.previousStableDebt = vars.principalStableDebt.rayMul(vars.cumulatedStableInterest);
//debt accrued is the sum of the current debt minus the sum of the debt at the last update
vars.totalDebtAccrued = vars
.currentVariableDebt
.add(vars.currentStableDebt)
.sub(vars.previousVariableDebt)
.sub(vars.previousStableDebt);
vars.amountToMint = vars.totalDebtAccrued.percentMul(vars.reserveFactor);
if (vars.amountToMint != 0) {
IAToken(reserve.aTokenAddress).mintToTreasury(vars.amountToMint, newLiquidityIndex);
}
}
/**
* @dev Updates the reserve indexes and the timestamp of the update
* @param reserve The reserve reserve to be updated
* @param scaledVariableDebt The scaled variable debt
* @param liquidityIndex The last stored liquidity index
* @param variableBorrowIndex The last stored variable borrow index
**/
function _updateIndexes(
DataTypes.ReserveData storage reserve,
uint256 scaledVariableDebt,
uint256 liquidityIndex,
uint256 variableBorrowIndex,
uint40 timestamp
) internal returns (uint256, uint256) {
uint256 currentLiquidityRate = reserve.currentLiquidityRate;
uint256 newLiquidityIndex = liquidityIndex;
uint256 newVariableBorrowIndex = variableBorrowIndex;
//only cumulating if there is any income being produced
if (currentLiquidityRate > 0) {
uint256 cumulatedLiquidityInterest =
MathUtils.calculateLinearInterest(currentLiquidityRate, timestamp);
newLiquidityIndex = cumulatedLiquidityInterest.rayMul(liquidityIndex);
require(newLiquidityIndex <= type(uint128).max, Errors.RL_LIQUIDITY_INDEX_OVERFLOW);
reserve.liquidityIndex = uint128(newLiquidityIndex);
//as the liquidity rate might come only from stable rate loans, we need to ensure
//that there is actual variable debt before accumulating
if (scaledVariableDebt != 0) {
uint256 cumulatedVariableBorrowInterest =
MathUtils.calculateCompoundedInterest(reserve.currentVariableBorrowRate, timestamp);
newVariableBorrowIndex = cumulatedVariableBorrowInterest.rayMul(variableBorrowIndex);
require(
newVariableBorrowIndex <= type(uint128).max,
Errors.RL_VARIABLE_BORROW_INDEX_OVERFLOW
);
reserve.variableBorrowIndex = uint128(newVariableBorrowIndex);
}
}
//solium-disable-next-line
reserve.lastUpdateTimestamp = uint40(block.timestamp);
return (newLiquidityIndex, newVariableBorrowIndex);
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {SafeMath} from '../../../dependencies/openzeppelin/contracts/SafeMath.sol';
import {WadRayMath} from './WadRayMath.sol';
library MathUtils {
using SafeMath for uint256;
using WadRayMath for uint256;
/// @dev Ignoring leap years
uint256 internal constant SECONDS_PER_YEAR = 365 days;
/**
* @dev Function to calculate the interest accumulated using a linear interest rate formula
* @param rate The interest rate, in ray
* @param lastUpdateTimestamp The timestamp of the last update of the interest
* @return The interest rate linearly accumulated during the timeDelta, in ray
**/
function calculateLinearInterest(uint256 rate, uint40 lastUpdateTimestamp)
internal
view
returns (uint256)
{
//solium-disable-next-line
uint256 timeDifference = block.timestamp.sub(uint256(lastUpdateTimestamp));
return (rate.mul(timeDifference) / SECONDS_PER_YEAR).add(WadRayMath.ray());
}
/**
* @dev Function to calculate the interest using a compounded interest rate formula
* To avoid expensive exponentiation, the calculation is performed using a binomial approximation:
*
* (1+x)^n = 1+n*x+[n/2*(n-1)]*x^2+[n/6*(n-1)*(n-2)*x^3...
*
* The approximation slightly underpays liquidity providers and undercharges borrowers, with the advantage of great gas cost reductions
* The whitepaper contains reference to the approximation and a table showing the margin of error per different time periods
*
* @param rate The interest rate, in ray
* @param lastUpdateTimestamp The timestamp of the last update of the interest
* @return The interest rate compounded during the timeDelta, in ray
**/
function calculateCompoundedInterest(
uint256 rate,
uint40 lastUpdateTimestamp,
uint256 currentTimestamp
) internal pure returns (uint256) {
//solium-disable-next-line
uint256 exp = currentTimestamp.sub(uint256(lastUpdateTimestamp));
if (exp == 0) {
return WadRayMath.ray();
}
uint256 expMinusOne = exp - 1;
uint256 expMinusTwo = exp > 2 ? exp - 2 : 0;
uint256 ratePerSecond = rate / SECONDS_PER_YEAR;
uint256 basePowerTwo = ratePerSecond.rayMul(ratePerSecond);
uint256 basePowerThree = basePowerTwo.rayMul(ratePerSecond);
uint256 secondTerm = exp.mul(expMinusOne).mul(basePowerTwo) / 2;
uint256 thirdTerm = exp.mul(expMinusOne).mul(expMinusTwo).mul(basePowerThree) / 6;
return WadRayMath.ray().add(ratePerSecond.mul(exp)).add(secondTerm).add(thirdTerm);
}
/**
* @dev Calculates the compounded interest between the timestamp of the last update and the current block timestamp
* @param rate The interest rate (in ray)
* @param lastUpdateTimestamp The timestamp from which the interest accumulation needs to be calculated
**/
function calculateCompoundedInterest(uint256 rate, uint40 lastUpdateTimestamp)
internal
view
returns (uint256)
{
return calculateCompoundedInterest(rate, lastUpdateTimestamp, block.timestamp);
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {Errors} from '../helpers/Errors.sol';
/**
* @title PercentageMath library
* @author Aave
* @notice Provides functions to perform percentage calculations
* @dev Percentages are defined by default with 2 decimals of precision (100.00). The precision is indicated by PERCENTAGE_FACTOR
* @dev Operations are rounded half up
**/
library PercentageMath {
uint256 constant PERCENTAGE_FACTOR = 1e4; //percentage plus two decimals
uint256 constant HALF_PERCENT = PERCENTAGE_FACTOR / 2;
/**
* @dev Executes a percentage multiplication
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return The percentage of value
**/
function percentMul(uint256 value, uint256 percentage) internal pure returns (uint256) {
if (value == 0 || percentage == 0) {
return 0;
}
require(
value <= (type(uint256).max - HALF_PERCENT) / percentage,
Errors.MATH_MULTIPLICATION_OVERFLOW
);
return (value * percentage + HALF_PERCENT) / PERCENTAGE_FACTOR;
}
/**
* @dev Executes a percentage division
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return The value divided the percentage
**/
function percentDiv(uint256 value, uint256 percentage) internal pure returns (uint256) {
require(percentage != 0, Errors.MATH_DIVISION_BY_ZERO);
uint256 halfPercentage = percentage / 2;
require(
value <= (type(uint256).max - halfPercentage) / PERCENTAGE_FACTOR,
Errors.MATH_MULTIPLICATION_OVERFLOW
);
return (value * PERCENTAGE_FACTOR + halfPercentage) / percentage;
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
import {Errors} from '../helpers/Errors.sol';
/**
* @title WadRayMath library
* @author Aave
* @dev Provides mul and div function for wads (decimal numbers with 18 digits precision) and rays (decimals with 27 digits)
**/
library WadRayMath {
uint256 internal constant WAD = 1e18;
uint256 internal constant halfWAD = WAD / 2;
uint256 internal constant RAY = 1e27;
uint256 internal constant halfRAY = RAY / 2;
uint256 internal constant WAD_RAY_RATIO = 1e9;
/**
* @return One ray, 1e27
**/
function ray() internal pure returns (uint256) {
return RAY;
}
/**
* @return One wad, 1e18
**/
function wad() internal pure returns (uint256) {
return WAD;
}
/**
* @return Half ray, 1e27/2
**/
function halfRay() internal pure returns (uint256) {
return halfRAY;
}
/**
* @return Half ray, 1e18/2
**/
function halfWad() internal pure returns (uint256) {
return halfWAD;
}
/**
* @dev Multiplies two wad, rounding half up to the nearest wad
* @param a Wad
* @param b Wad
* @return The result of a*b, in wad
**/
function wadMul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0 || b == 0) {
return 0;
}
require(a <= (type(uint256).max - halfWAD) / b, Errors.MATH_MULTIPLICATION_OVERFLOW);
return (a * b + halfWAD) / WAD;
}
/**
* @dev Divides two wad, rounding half up to the nearest wad
* @param a Wad
* @param b Wad
* @return The result of a/b, in wad
**/
function wadDiv(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, Errors.MATH_DIVISION_BY_ZERO);
uint256 halfB = b / 2;
require(a <= (type(uint256).max - halfB) / WAD, Errors.MATH_MULTIPLICATION_OVERFLOW);
return (a * WAD + halfB) / b;
}
/**
* @dev Multiplies two ray, rounding half up to the nearest ray
* @param a Ray
* @param b Ray
* @return The result of a*b, in ray
**/
function rayMul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0 || b == 0) {
return 0;
}
require(a <= (type(uint256).max - halfRAY) / b, Errors.MATH_MULTIPLICATION_OVERFLOW);
return (a * b + halfRAY) / RAY;
}
/**
* @dev Divides two ray, rounding half up to the nearest ray
* @param a Ray
* @param b Ray
* @return The result of a/b, in ray
**/
function rayDiv(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, Errors.MATH_DIVISION_BY_ZERO);
uint256 halfB = b / 2;
require(a <= (type(uint256).max - halfB) / RAY, Errors.MATH_MULTIPLICATION_OVERFLOW);
return (a * RAY + halfB) / b;
}
/**
* @dev Casts ray down to wad
* @param a Ray
* @return a casted to wad, rounded half up to the nearest wad
**/
function rayToWad(uint256 a) internal pure returns (uint256) {
uint256 halfRatio = WAD_RAY_RATIO / 2;
uint256 result = halfRatio + a;
require(result >= halfRatio, Errors.MATH_ADDITION_OVERFLOW);
return result / WAD_RAY_RATIO;
}
/**
* @dev Converts wad up to ray
* @param a Wad
* @return a converted in ray
**/
function wadToRay(uint256 a) internal pure returns (uint256) {
uint256 result = a * WAD_RAY_RATIO;
require(result / WAD_RAY_RATIO == a, Errors.MATH_MULTIPLICATION_OVERFLOW);
return result;
}
}
// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.7.6;
library DataTypes {
// refer to the whitepaper, section 1.1 basic concepts for a formal description of these properties.
struct ReserveData {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
//the current stable borrow rate. Expressed in ray
uint128 currentStableBorrowRate;
uint40 lastUpdateTimestamp;
//tokens addresses
address aTokenAddress;
address stableDebtTokenAddress;
address variableDebtTokenAddress;
//address of the interest rate strategy
address interestRateStrategyAddress;
//the id of the reserve. Represents the position in the list of the active reserves
uint8 id;
}
struct ReserveConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 48-55: Decimals
//bit 56: Reserve is active
//bit 57: reserve is frozen
//bit 58: borrowing is enabled
//bit 59: stable rate borrowing enabled
//bit 60-63: reserved
//bit 64-79: reserve factor
uint256 data;
}
struct UserConfigurationMap {
uint256 data;
}
enum InterestRateMode {NONE, STABLE, VARIABLE}
}