Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
interface IMasterchef {
struct PoolInfo {
uint256 accRewardPerShare;
uint256 accRewardPerShareExtra;
uint256 lastRewardTime;
}
function setDistributionRate(uint256 amount) external;
function setDistributionRateExtra(uint256 amount) external;
function updatePool() external returns (PoolInfo memory pool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
interface IMinter {
function update_period() external returns (uint);
function check() external view returns(bool);
function period() external view returns(uint);
function active_period() external view returns(uint);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
interface IVesting {
struct UserVestingInfo {
uint256 amount;
uint256 start;
uint256 claimed;
uint256 vestingCliffSnapshot;
uint256 vestingPeriodSnapshot;
}
event VestingCliffChanged(uint256 newValue);
event VestingPeriodChanged(uint256 newValue);
event VestedTokens(address indexed user, uint256 amount);
event Claimed(address indexed user, uint256 vestingId, uint256 amount);
function TOKEN() external view returns (address);
function vestingCliff() external view returns (uint256);
function vestingPeriod() external view returns (uint256);
function vestTokensFor(address user, uint256 amount) external;
function claimAll() external;
function claim(uint256 vestingId) external;
function claimableTotal(address user) external view returns(uint256 total);
function claimable(
address user,
uint256 vestingId
) external view returns (uint256);
function userVestingInfo(
address user
) external view returns (UserVestingInfo[] memory);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
interface IVotingEscrow {
struct Point {
int128 bias;
int128 slope; // # -dweight / dt
uint256 ts;
uint256 blk; // block
}
struct LockedBalance {
int128 amount;
uint start;
uint end;
}
function create_lock_for(uint _value, uint _lock_duration, address _to) external returns (uint);
function locked(uint id) external view returns(LockedBalance memory);
function tokenOfOwnerByIndex(address _owner, uint _tokenIndex) external view returns (uint);
function token() external view returns (address);
function team() external returns (address);
function epoch() external view returns (uint);
function point_history(uint loc) external view returns (Point memory);
function user_point_history(uint tokenId, uint loc) external view returns (Point memory);
function user_point_epoch(uint tokenId) external view returns (uint);
function ownerOf(uint) external view returns (address);
function isApprovedOrOwner(address, uint) external view returns (bool);
function transferFrom(address, address, uint) external;
function voted(uint) external view returns (bool);
function attachments(uint) external view returns (uint);
function voting(uint tokenId) external;
function abstain(uint tokenId) external;
function attach(uint tokenId) external;
function detach(uint tokenId) external;
function checkpoint() external;
function deposit_for(uint tokenId, uint value) external;
function balanceOfAtNFT(uint _tokenId, uint _block) external view returns (uint);
function balanceOfNFT(uint _id) external view returns (uint);
function balanceOf(address _owner) external view returns (uint);
function totalSupply() external view returns (uint);
function supply() external view returns (uint);
function decimals() external view returns(uint8);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
library Constants {
uint256 internal constant EPOCH_LENGTH = 30 minutes; //7 days;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC721Receiver} from "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import {IVotingEscrow} from "./interfaces/IVotingEscrow.sol";
import {IVesting} from "./interfaces/IVesting.sol";
import {IMinter} from "./interfaces/IMinter.sol";
import {IMasterchef} from "./interfaces/IMasterchef.sol";
import {Constants} from "./libraries/Constants.sol";
contract MasterChef is Ownable, IMasterchef {
using SafeERC20 for IERC20;
struct UserInfo {
uint256 amount;
uint256 rewardDebt;
uint256 rewardDebtExtra;
uint256[] tokenIds;
mapping(uint256 => uint256) tokenIndices;
}
/// @notice Address of reward token contract.
IERC20 public TOKEN;
/// @notice Address of the NFT token for each MCV2 pool.
IERC721 public NFT;
uint256 public constant LOCK_DURATION = 2 * 365 * 86400;
uint256 public constant PERCENT_PRECISION = 10_000;
uint256 public veShare;
address public votingEscrow;
address public vesting;
address public minter;
/// @notice Info of each MCV2 pool.
PoolInfo public poolInfo;
/// @notice Mapping from token ID to owner address
mapping(uint256 => address) public tokenOwner;
/// @notice Info of each user that stakes nft tokens.
mapping(address => UserInfo) public userInfo;
/// @notice Keeper register. Return true if 'address' is a keeper.
mapping(address => bool) public isKeeper;
uint256 private _totalRewards;
uint256 private _totalRewardsExtra;
uint256 public rewardPerSecond;
uint256 public rewardPerSecondExtra;
uint256 private ACC_TOKEN_PRECISION;
uint256 public distributePeriod;
uint256 public lastDistributedTime;
uint256 public lastDistributedTimeExtra;
event VeShareChanged(uint256 newValue);
event Deposit(address indexed user, uint256[] tokenIds, address indexed to);
event Withdraw(
address indexed user,
uint256[] tokenIds,
address indexed to
);
event Harvest(address indexed user, uint256 amount);
event HarvestExtra(address indexed user, uint256 amount);
event LogUpdatePool(
uint256 lastRewardTime,
uint256 nftSupply,
uint256 accRewardPerShare,
uint256 accRewardPerShareExtra
);
event LogRewardPerSecond(uint256 rewardPerSecond);
event LogRewardPerSecondExtra(uint256 rewardPerSecond);
event EmergencyWithdraw(address indexed user, uint256[] tokenIds, address indexed to);
modifier onlyKeeper() {
require(msg.sender == owner() || isKeeper[msg.sender], "not keeper");
_;
}
constructor(
IERC20 _TOKEN,
IERC721 _NFT,
address _minter,
address _vesting,
address _votingEscrow,
uint256 _veShare
) {
require(_veShare <= PERCENT_PRECISION, "bad percent");
TOKEN = _TOKEN;
NFT = _NFT;
veShare = _veShare;
vesting = _vesting;
votingEscrow = _votingEscrow;
minter = _minter;
distributePeriod = Constants.EPOCH_LENGTH;
ACC_TOKEN_PRECISION = 1e12;
poolInfo = PoolInfo({
lastRewardTime: block.timestamp,
accRewardPerShare: 0,
accRewardPerShareExtra: 0
});
emit VeShareChanged(_veShare);
}
/// @notice change VE reward share
/// @param newValue new share value
function setVestingEscrowShare(uint256 newValue) external onlyOwner {
require(newValue <= PERCENT_PRECISION, "bad percent");
veShare = newValue;
emit VeShareChanged(newValue);
}
/// @notice add keepers
function addKeeper(address[] calldata _keepers) external onlyOwner {
uint256 i = 0;
uint256 len = _keepers.length;
for (i; i < len; i++) {
address _keeper = _keepers[i];
if (!isKeeper[_keeper]) {
isKeeper[_keeper] = true;
}
}
}
/// @notice remove keepers
function removeKeeper(address[] calldata _keepers) external onlyOwner {
uint256 i = 0;
uint256 len = _keepers.length;
for (i; i < len; i++) {
address _keeper = _keepers[i];
if (isKeeper[_keeper]) {
isKeeper[_keeper] = false;
}
}
}
/// @notice Sets the reward per second to be distributed. Can only be called by the owner.
/// @param _rewardPerSecond The amount of Reward to be distributed per second.
function setRewardPerSecond(uint256 _rewardPerSecond) public onlyOwner {
updatePool();
if (lastDistributedTime > block.timestamp) {
uint256 notDistributed = rewardPerSecond *
(lastDistributedTime - block.timestamp);
lastDistributedTime =
block.timestamp +
notDistributed /
_rewardPerSecond;
}
rewardPerSecond = _rewardPerSecond;
emit LogRewardPerSecond(_rewardPerSecond);
}
/// @notice Sets the extra-reward per second to be distributed. Can only be called by the owner.
/// @param _rewardPerSecondExtra The amount of extra-Reward to be distributed per second.
function setRewardPerSecondExtra(uint256 _rewardPerSecondExtra) public onlyOwner {
updatePool();
if (lastDistributedTimeExtra > block.timestamp) {
uint256 notDistributed = rewardPerSecondExtra *
(lastDistributedTimeExtra - block.timestamp);
lastDistributedTimeExtra =
block.timestamp +
notDistributed /
_rewardPerSecondExtra;
}
rewardPerSecondExtra = _rewardPerSecondExtra;
emit LogRewardPerSecondExtra(_rewardPerSecondExtra);
}
/// @notice add rewards to the pool
/// @param amount of rewards
function setDistributionRate(uint256 amount) public onlyKeeper {
updatePool();
uint256 notDistributed;
if (lastDistributedTime > 0 && block.timestamp < lastDistributedTime) {
notDistributed =
rewardPerSecond *
(lastDistributedTime - block.timestamp);
}
amount = amount + notDistributed;
uint256 _rewardPerSecond = amount / distributePeriod;
rewardPerSecond = _rewardPerSecond;
lastDistributedTime = block.timestamp + distributePeriod;
emit LogRewardPerSecond(_rewardPerSecond);
}
/// @notice add extra-rewards to the pool
/// @param amount of extra-rewards
function setDistributionRateExtra(uint256 amount) public onlyKeeper {
updatePool();
uint256 notDistributed;
if (lastDistributedTimeExtra > 0 && block.timestamp < lastDistributedTimeExtra) {
notDistributed =
rewardPerSecondExtra *
(lastDistributedTimeExtra - block.timestamp);
}
amount = amount + notDistributed;
uint256 _rewardPerSecondExtra = amount / distributePeriod;
rewardPerSecondExtra = _rewardPerSecondExtra;
lastDistributedTimeExtra = block.timestamp + distributePeriod;
emit LogRewardPerSecondExtra(_rewardPerSecondExtra);
}
/// @notice View function to see pending TOKEN on frontend.
/// @param _user Address of user.
/// @return pending TOKEN reward for a given user.
function pendingReward(
address _user
) external view returns (uint256 pending) {
PoolInfo memory pool = poolInfo;
UserInfo storage user = userInfo[_user];
uint256 accRewardPerShare = pool.accRewardPerShare;
uint256 nftSupply = NFT.balanceOf(address(this));
if (
block.timestamp > pool.lastRewardTime &&
nftSupply != 0 &&
lastDistributedTime > 0 &&
getRightBoarder() > pool.lastRewardTime
) {
uint256 time = getRightBoarder() - pool.lastRewardTime;
uint256 reward = time * rewardPerSecond;
accRewardPerShare =
accRewardPerShare +
((reward * ACC_TOKEN_PRECISION) / nftSupply);
}
uint256 accumulatedReward =
(user.amount * accRewardPerShare) / ACC_TOKEN_PRECISION;
return accumulatedReward - user.rewardDebt;
}
/// @notice View function to see pending extra TOKEN reward on frontend.
/// @param _user Address of user.
/// @return pending TOKEN extra reward for a given user.
function pendingRewardExtra(
address _user
) external view returns (uint256 pending) {
PoolInfo memory pool = poolInfo;
UserInfo storage user = userInfo[_user];
uint256 accRewardPerShareExtra = pool.accRewardPerShareExtra;
uint256 nftSupply = NFT.balanceOf(address(this));
if (
block.timestamp > pool.lastRewardTime &&
nftSupply != 0 &&
lastDistributedTimeExtra > 0 &&
getRightBoarderExtra() > pool.lastRewardTime
) {
uint256 time = getRightBoarderExtra() - pool.lastRewardTime;
uint256 reward = time * rewardPerSecondExtra;
accRewardPerShareExtra =
accRewardPerShareExtra +
((reward * ACC_TOKEN_PRECISION) / nftSupply);
}
uint256 accumulatedReward =
(user.amount * accRewardPerShareExtra) / ACC_TOKEN_PRECISION;
return accumulatedReward - user.rewardDebtExtra;
}
/// @dev Check the end of period to limit rewards distribution
function getRightBoarder() public view returns (uint256) {
return Math.min(block.timestamp, lastDistributedTime);
}
/// @dev Check the end of period to limit extra rewards distribution
function getRightBoarderExtra() public view returns (uint256) {
return Math.min(block.timestamp, lastDistributedTimeExtra);
}
/// @notice View function to see TOKEN Ids on frontend.
/// @param _user Address of user.
/// @return tokenIds Staked Token Ids for a given user.
function stakedTokenIds(
address _user
) external view returns (uint256[] memory tokenIds) {
tokenIds = userInfo[_user].tokenIds;
}
/// @notice Update reward variables of the given pool.
/// @return pool Returns the pool that was updated.
function updatePool() public returns (PoolInfo memory pool) {
pool = poolInfo;
if (block.timestamp > pool.lastRewardTime) {
uint256 nftSupply = NFT.balanceOf(address(this));
if (lastDistributedTime > 0) {
uint256 rightBoarder = getRightBoarder();
uint256 time = rightBoarder > pool.lastRewardTime
? rightBoarder - pool.lastRewardTime
: 0;
if (nftSupply > 0 && time > 0) {
uint256 reward = time * rewardPerSecond;
pool.accRewardPerShare =
pool.accRewardPerShare +
(reward * ACC_TOKEN_PRECISION) /
nftSupply;
_totalRewards += reward;
} else lastDistributedTime += time;
}
if (lastDistributedTimeExtra > 0) {
uint256 rightBoarder = getRightBoarderExtra();
uint256 time = rightBoarder > pool.lastRewardTime
? rightBoarder - pool.lastRewardTime
: 0;
if (nftSupply > 0 && time > 0) {
uint256 reward = time * rewardPerSecondExtra;
pool.accRewardPerShareExtra =
pool.accRewardPerShareExtra +
(reward * ACC_TOKEN_PRECISION) /
nftSupply;
_totalRewardsExtra += reward;
} else lastDistributedTimeExtra += time;
}
pool.lastRewardTime = block.timestamp;
poolInfo = pool;
emit LogUpdatePool(
pool.lastRewardTime,
nftSupply,
pool.accRewardPerShare,
pool.accRewardPerShareExtra
);
}
}
function totalRewards() external view returns(uint256) {
uint256 rightBoarder = getRightBoarder();
uint256 time = rightBoarder > poolInfo.lastRewardTime
? rightBoarder - poolInfo.lastRewardTime
: 0;
uint256 reward = time * rewardPerSecond;
return _totalRewards + reward;
}
function totalRewardsExtra() external view returns(uint256) {
uint256 rightBoarder = getRightBoarderExtra();
uint256 time = rightBoarder > poolInfo.lastRewardTime
? rightBoarder - poolInfo.lastRewardTime
: 0;
uint256 reward = time * rewardPerSecondExtra;
return _totalRewardsExtra + reward;
}
/// @notice Deposit nft tokens to MCV2 for token allocation.
/// @param tokenIds NFT tokenIds to deposit.
function deposit(uint256[] calldata tokenIds) public {
PoolInfo memory pool = updatePool();
UserInfo storage user = userInfo[msg.sender];
if(user.amount > 0) {
// calculate & transfer main rewards
uint256 pending = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION - user.rewardDebt;
if(pending > 0) TOKEN.safeTransfer(msg.sender, pending);
// calculate & transfer extra rewards
pending = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION - user.rewardDebtExtra;
_sendExtraRewards(msg.sender, pending);
}
// Effects
for (uint256 i = 0; i < tokenIds.length; i++) {
require(NFT.ownerOf(tokenIds[i]) == msg.sender, "CHEF: !NFT Owner");
user.tokenIndices[tokenIds[i]] = user.tokenIds.length;
user.tokenIds.push(tokenIds[i]);
tokenOwner[tokenIds[i]] = msg.sender;
NFT.transferFrom(msg.sender, address(this), tokenIds[i]);
}
user.amount = user.amount + tokenIds.length;
user.rewardDebt = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION;
user.rewardDebtExtra = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION;
emit Deposit(msg.sender, tokenIds, msg.sender);
}
/// @notice Withdraw NFT tokens from MCV2.
/// @param tokenIds NFT token ids to withdraw.
function withdraw(uint256[] calldata tokenIds) public {
PoolInfo memory pool = updatePool();
UserInfo storage user = userInfo[msg.sender];
if(user.amount > 0) {
// calculate & transfer main rewards
uint256 pending = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION - user.rewardDebt;
if(pending > 0) TOKEN.safeTransfer(msg.sender, pending);
// calculate & transfer extra rewards
pending = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION - user.rewardDebtExtra;
_sendExtraRewards(msg.sender, pending);
}
// Effects
require(user.amount >= tokenIds.length);
user.amount = user.amount - tokenIds.length;
user.rewardDebt = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION;
user.rewardDebtExtra = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION;
for (uint256 i = 0; i < tokenIds.length; i++) {
require(tokenOwner[tokenIds[i]] == msg.sender, "CHEF: !NFT Owner");
NFT.transferFrom(address(this), msg.sender, tokenIds[i]);
uint256 lastTokenId = user.tokenIds[user.tokenIds.length - 1];
user.tokenIds[user.tokenIndices[tokenIds[i]]] = lastTokenId;
user.tokenIndices[lastTokenId] = user.tokenIndices[tokenIds[i]];
user.tokenIds.pop();
delete user.tokenIndices[tokenIds[i]];
delete tokenOwner[tokenIds[i]];
}
emit Withdraw(msg.sender, tokenIds, msg.sender);
}
/// @notice Harvest proceeds for transaction sender.
function harvest() public {
PoolInfo memory pool = updatePool();
UserInfo storage user = userInfo[msg.sender];
uint256 accumulatedReward =
(user.amount * (pool.accRewardPerShare)) / ACC_TOKEN_PRECISION;
uint256 _pendingReward = accumulatedReward - user.rewardDebt;
// Effects
user.rewardDebt = accumulatedReward;
// Interactions
TOKEN.safeTransfer(msg.sender, _pendingReward);
emit Harvest(msg.sender, _pendingReward);
}
/// @notice Harvest proceeds for transaction sender.
function harvestExtra() public {
PoolInfo memory pool = updatePool();
UserInfo storage user = userInfo[msg.sender];
uint256 accumulatedReward =
(user.amount * (pool.accRewardPerShareExtra)) / ACC_TOKEN_PRECISION;
uint256 _pendingReward = accumulatedReward - user.rewardDebtExtra;
// Effects
user.rewardDebtExtra = accumulatedReward;
_sendExtraRewards(msg.sender, _pendingReward);
}
function onERC721Received(
address,
address,
uint256,
bytes calldata
) external pure returns (bytes4) {
return IERC721Receiver.onERC721Received.selector;
}
function emergencyWithdraw() external {
uint256[] memory tokenIds = userInfo[msg.sender].tokenIds;
delete(userInfo[msg.sender]);
for (uint256 i = 0; i < tokenIds.length; i++) {
delete tokenOwner[tokenIds[i]];
delete userInfo[msg.sender].tokenIndices[tokenIds[i]];
NFT.transferFrom(address(this), msg.sender, tokenIds[i]);
}
emit EmergencyWithdraw(msg.sender, tokenIds, msg.sender);
}
function _sendExtraRewards(address user, uint256 pending) internal {
// Interactions
if (pending != 0) {
uint256 veShareAmount = (veShare * pending) /
PERCENT_PRECISION;
if (veShareAmount > 0) {
TOKEN.safeApprove(votingEscrow, 0);
TOKEN.safeApprove(votingEscrow, veShareAmount);
IVotingEscrow(votingEscrow).create_lock_for(
veShareAmount,
LOCK_DURATION,
user
);
}
uint256 vestingAmount = pending - veShareAmount;
if (vestingAmount > 0) {
TOKEN.safeApprove(vesting, vestingAmount);
IVesting(vesting).vestTokensFor(user, vestingAmount);
}
}
emit HarvestExtra(user, pending);
}
}