Contract Source Code:
//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.27;
import "./Create3.sol";
import "./SoladyOwnable.sol";
import {ECDSA} from "solady/utils/ECDSA.sol";
contract Deployer is SoladyOwnable {
event ContractDeployed(address indexed contractAddress);
error InvalidBytecodeSignature();
using ECDSA for bytes32;
constructor(address _owner) SoladyOwnable(_owner) {}
function deploy(bytes32 _salt, bytes calldata _creationCode, bytes calldata signature) external returns (address deployedContract) {
bytes32 hash = keccak256(abi.encode(_creationCode, _salt, block.chainid));
if (!_verifySignature(hash, signature)) revert InvalidBytecodeSignature();
deployedContract = Create3.create3(_salt, _creationCode);
emit ContractDeployed(deployedContract);
}
function deploy(bytes32 _salt, bytes calldata _creationCode) onlyOwner external returns (address deployedContract) {
deployedContract = Create3.create3(_salt, _creationCode);
emit ContractDeployed(deployedContract);
}
function addressOf(bytes32 _salt) external view returns (address) {
return Create3.addressOf(_salt);
}
function _verifySignature(bytes32 hash, bytes calldata signature) internal view returns (bool) {
if (hash.recoverCalldata(signature) == owner())
return true;
if (hash.toEthSignedMessageHash().recoverCalldata(signature) == owner())
return true;
return false;
}
}
//SPDX-License-Identifier: Unlicense
pragma solidity 0.8.27;
/**
@title A library for deploying contracts EIP-3171 style.
@author Agustin Aguilar <[email protected]>
*/
library Create3 {
error ErrorCreatingProxy();
error ErrorCreatingContract();
error TargetAlreadyExists();
/**
@notice The bytecode for a contract that proxies the creation of another contract
@dev If this code is deployed using CREATE2 it can be used to decouple `creationCode` from the child contract address
0x67363d3d37363d34f03d5260086018f3:
0x00 0x67 0x67XXXXXXXXXXXXXXXX PUSH8 bytecode 0x363d3d37363d34f0
0x01 0x3d 0x3d RETURNDATASIZE 0 0x363d3d37363d34f0
0x02 0x52 0x52 MSTORE
0x03 0x60 0x6008 PUSH1 08 8
0x04 0x60 0x6018 PUSH1 18 24 8
0x05 0xf3 0xf3 RETURN
0x363d3d37363d34f0:
0x00 0x36 0x36 CALLDATASIZE cds
0x01 0x3d 0x3d RETURNDATASIZE 0 cds
0x02 0x3d 0x3d RETURNDATASIZE 0 0 cds
0x03 0x37 0x37 CALLDATACOPY
0x04 0x36 0x36 CALLDATASIZE cds
0x05 0x3d 0x3d RETURNDATASIZE 0 cds
0x06 0x34 0x34 CALLVALUE val 0 cds
0x07 0xf0 0xf0 CREATE addr
*/
bytes internal constant PROXY_CHILD_BYTECODE =
hex"67_36_3d_3d_37_36_3d_34_f0_3d_52_60_08_60_18_f3";
// KECCAK256_PROXY_CHILD_BYTECODE = keccak256(PROXY_CHILD_BYTECODE);
bytes32 internal constant KECCAK256_PROXY_CHILD_BYTECODE =
0x21c35dbe1b344a2488cf3321d6ce542f8e9f305544ff09e4993a62319a497c1f;
/**
@notice Returns the size of the code on a given address
@param _addr Address that may or may not contain code
@return size of the code on the given `_addr`
*/
function codeSize(address _addr) internal view returns (uint256 size) {
assembly {
size := extcodesize(_addr)
}
}
/**
@notice Creates a new contract with given `_creationCode` and `_salt`
@param _salt Salt of the contract creation, resulting address will be derivated from this value only
@param _creationCode Creation code (constructor) of the contract to be deployed, this value doesn't affect the resulting address
@return addr of the deployed contract, reverts on error
*/
function create3(
bytes32 _salt,
bytes memory _creationCode
) internal returns (address addr) {
return create3(_salt, _creationCode, 0);
}
/**
@notice Creates a new contract with given `_creationCode` and `_salt`
@param _salt Salt of the contract creation, resulting address will be derivated from this value only
@param _creationCode Creation code (constructor) of the contract to be deployed, this value doesn't affect the resulting address
@param _value In WEI of ETH to be forwarded to child contract
@return addr of the deployed contract, reverts on error
*/
function create3(
bytes32 _salt,
bytes memory _creationCode,
uint256 _value
) internal returns (address addr) {
// Creation code
bytes memory creationCode = PROXY_CHILD_BYTECODE;
// Get target final address
addr = addressOf(_salt);
if (codeSize(addr) != 0) revert TargetAlreadyExists();
// Create CREATE2 proxy
address proxy;
assembly {
proxy := create2(
0,
add(creationCode, 32),
mload(creationCode),
_salt
)
}
if (proxy == address(0)) revert ErrorCreatingProxy();
// Call proxy with final init code
(bool success, ) = proxy.call{value: _value}(_creationCode);
if (!success || codeSize(addr) == 0) revert ErrorCreatingContract();
}
function addressOfProxy(bytes32 _salt) internal view returns (address) {
return
address(
uint160(
uint256(
keccak256(
abi.encodePacked(
hex"ff",
address(this),
_salt,
KECCAK256_PROXY_CHILD_BYTECODE
)
)
)
)
);
}
/**
@notice Computes the resulting address of a contract deployed using address(this) and the given `_salt`
@param _salt Salt of the contract creation, resulting address will be derivated from this value only
@return addr of the deployed contract, reverts on error
@dev The address creation formula is: keccak256(rlp([keccak256(0xff ++ address(this) ++ _salt ++ keccak256(childBytecode))[12:], 0x01]))
*/
function addressOf(bytes32 _salt) internal view returns (address) {
address proxy = addressOfProxy(_salt);
return
address(
uint160(
uint256(
keccak256(abi.encodePacked(hex"d6_94", proxy, hex"01"))
)
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.27;
import { Ownable } from "solady/auth/Ownable.sol";
contract SoladyOwnable is Ownable {
constructor(address _owner) Ownable() {
assembly {
if iszero(shl(96, _owner)) {
mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
revert(0x1c, 0x04)
}
}
_initializeOwner(_owner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
///
/// @dev Note:
/// - The recovery functions use the ecrecover precompile (0x1).
/// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
/// This is for more safety by default.
/// Use the `tryRecover` variants if you need to get the zero address back
/// upon recovery failure instead.
/// - As of Solady version 0.0.134, all `bytes signature` variants accept both
/// regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
/// This is for calldata efficiency on smart accounts prevalent on L2s.
///
/// WARNING! Do NOT directly use signatures as unique identifiers:
/// - The recovery operations do NOT check if a signature is non-malleable.
/// - Use a nonce in the digest to prevent replay attacks on the same contract.
/// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
/// EIP-712 also enables readable signing of typed data for better user safety.
/// - If you need a unique hash from a signature, please use the `canonicalHash` functions.
library ECDSA {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The order of the secp256k1 elliptic curve.
uint256 internal constant N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141;
/// @dev `N/2 + 1`. Used for checking the malleability of the signature.
uint256 private constant _HALF_N_PLUS_1 =
0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The signature is invalid.
error InvalidSignature();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RECOVERY OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
for { let m := mload(0x40) } 1 {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
} {
switch mload(signature)
case 64 {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
}
case 65 {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
}
default { continue }
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if returndatasize() { break }
}
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
for { let m := mload(0x40) } 1 {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
} {
switch signature.length
case 64 {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
}
case 65 {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
}
default { continue }
mstore(0x00, hash)
result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if returndatasize() { break }
}
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* TRY-RECOVER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// WARNING!
// These functions will NOT revert upon recovery failure.
// Instead, they will return the zero address upon recovery failure.
// It is critical that the returned address is NEVER compared against
// a zero address (e.g. an uninitialized address variable).
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecover(bytes32 hash, bytes memory signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
for { let m := mload(0x40) } 1 {} {
switch mload(signature)
case 64 {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
}
case 65 {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
}
default { break }
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
break
}
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
for { let m := mload(0x40) } 1 {} {
switch signature.length
case 64 {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
}
case 65 {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
}
default { break }
mstore(0x00, hash)
pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
break
}
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an Ethereum Signed Message, created from a `hash`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, hash) // Store into scratch space for keccak256.
mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes.
result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
}
}
/// @dev Returns an Ethereum Signed Message, created from `s`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
/// JSON-RPC method as part of EIP-191.
/// Note: Supports lengths of `s` up to 999999 bytes.
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let sLength := mload(s)
let o := 0x20
mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded.
mstore(0x00, 0x00)
// Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
for { let temp := sLength } 1 {} {
o := sub(o, 1)
mstore8(o, add(48, mod(temp, 10)))
temp := div(temp, 10)
if iszero(temp) { break }
}
let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
// Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
mstore(s, sLength) // Restore the length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CANONICAL HASH FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// The following functions returns the hash of the signature in it's canonicalized format,
// which is the 65-byte `abi.encodePacked(r, s, uint8(v))`, where `v` is either 27 or 28.
// If `s` is greater than `N / 2` then it will be converted to `N - s`
// and the `v` value will be flipped.
// If the signature has an invalid length, or if `v` is invalid,
// a uniquely corrupt hash will be returned.
// These functions are useful for "poor-mans-VRF".
/// @dev Returns the canonical hash of `signature`.
function canonicalHash(bytes memory signature) internal pure returns (bytes32 result) {
// @solidity memory-safe-assembly
assembly {
let l := mload(signature)
for {} 1 {} {
mstore(0x00, mload(add(signature, 0x20))) // `r`.
let s := mload(add(signature, 0x40))
let v := mload(add(signature, 0x41))
if eq(l, 64) {
v := add(shr(255, s), 27)
s := shr(1, shl(1, s))
}
if iszero(lt(s, _HALF_N_PLUS_1)) {
v := xor(v, 7)
s := sub(N, s)
}
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
break
}
// If the length is neither 64 nor 65, return a uniquely corrupted hash.
if iszero(lt(sub(l, 64), 2)) {
// `bytes4(keccak256("InvalidSignatureLength"))`.
result := xor(keccak256(add(signature, 0x20), l), 0xd62f1ab2)
}
}
}
/// @dev Returns the canonical hash of `signature`.
function canonicalHashCalldata(bytes calldata signature)
internal
pure
returns (bytes32 result)
{
// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
mstore(0x00, calldataload(signature.offset)) // `r`.
let s := calldataload(add(signature.offset, 0x20))
let v := calldataload(add(signature.offset, 0x21))
if eq(signature.length, 64) {
v := add(shr(255, s), 27)
s := shr(1, shl(1, s))
}
if iszero(lt(s, _HALF_N_PLUS_1)) {
v := xor(v, 7)
s := sub(N, s)
}
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
break
}
// If the length is neither 64 nor 65, return a uniquely corrupted hash.
if iszero(lt(sub(signature.length, 64), 2)) {
calldatacopy(mload(0x40), signature.offset, signature.length)
// `bytes4(keccak256("InvalidSignatureLength"))`.
result := xor(keccak256(mload(0x40), signature.length), 0xd62f1ab2)
}
}
}
/// @dev Returns the canonical hash of `signature`.
function canonicalHash(bytes32 r, bytes32 vs) internal pure returns (bytes32 result) {
// @solidity memory-safe-assembly
assembly {
mstore(0x00, r) // `r`.
let v := add(shr(255, vs), 27)
let s := shr(1, shl(1, vs))
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
}
}
/// @dev Returns the canonical hash of `signature`.
function canonicalHash(uint8 v, bytes32 r, bytes32 s) internal pure returns (bytes32 result) {
// @solidity memory-safe-assembly
assembly {
mstore(0x00, r) // `r`.
if iszero(lt(s, _HALF_N_PLUS_1)) {
v := xor(v, 7)
s := sub(N, s)
}
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes.
function emptySignature() internal pure returns (bytes calldata signature) {
/// @solidity memory-safe-assembly
assembly {
signature.length := 0
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The caller is not authorized to call the function.
error Unauthorized();
/// @dev The `newOwner` cannot be the zero address.
error NewOwnerIsZeroAddress();
/// @dev The `pendingOwner` does not have a valid handover request.
error NoHandoverRequest();
/// @dev Cannot double-initialize.
error AlreadyInitialized();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership is transferred from `oldOwner` to `newOwner`.
/// This event is intentionally kept the same as OpenZeppelin's Ownable to be
/// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
/// despite it not being as lightweight as a single argument event.
event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
/// @dev An ownership handover to `pendingOwner` has been requested.
event OwnershipHandoverRequested(address indexed pendingOwner);
/// @dev The ownership handover to `pendingOwner` has been canceled.
event OwnershipHandoverCanceled(address indexed pendingOwner);
/// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
/// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
/// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The owner slot is given by:
/// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
/// It is intentionally chosen to be a high value
/// to avoid collision with lower slots.
/// The choice of manual storage layout is to enable compatibility
/// with both regular and upgradeable contracts.
bytes32 internal constant _OWNER_SLOT =
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;
/// The ownership handover slot of `newOwner` is given by:
/// ```
/// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
/// let handoverSlot := keccak256(0x00, 0x20)
/// ```
/// It stores the expiry timestamp of the two-step ownership handover.
uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
function _guardInitializeOwner() internal pure virtual returns (bool guard) {}
/// @dev Initializes the owner directly without authorization guard.
/// This function must be called upon initialization,
/// regardless of whether the contract is upgradeable or not.
/// This is to enable generalization to both regular and upgradeable contracts,
/// and to save gas in case the initial owner is not the caller.
/// For performance reasons, this function will not check if there
/// is an existing owner.
function _initializeOwner(address newOwner) internal virtual {
if (_guardInitializeOwner()) {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
if sload(ownerSlot) {
mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
revert(0x1c, 0x04)
}
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
} else {
/// @solidity memory-safe-assembly
assembly {
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(_OWNER_SLOT, newOwner)
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
}
}
/// @dev Sets the owner directly without authorization guard.
function _setOwner(address newOwner) internal virtual {
if (_guardInitializeOwner()) {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
}
} else {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, newOwner)
}
}
}
/// @dev Throws if the sender is not the owner.
function _checkOwner() internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// If the caller is not the stored owner, revert.
if iszero(eq(caller(), sload(_OWNER_SLOT))) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns how long a two-step ownership handover is valid for in seconds.
/// Override to return a different value if needed.
/// Made internal to conserve bytecode. Wrap it in a public function if needed.
function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
return 48 * 3600;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC UPDATE FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Allows the owner to transfer the ownership to `newOwner`.
function transferOwnership(address newOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
if iszero(shl(96, newOwner)) {
mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
revert(0x1c, 0x04)
}
}
_setOwner(newOwner);
}
/// @dev Allows the owner to renounce their ownership.
function renounceOwnership() public payable virtual onlyOwner {
_setOwner(address(0));
}
/// @dev Request a two-step ownership handover to the caller.
/// The request will automatically expire in 48 hours (172800 seconds) by default.
function requestOwnershipHandover() public payable virtual {
unchecked {
uint256 expires = block.timestamp + _ownershipHandoverValidFor();
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to `expires`.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), expires)
// Emit the {OwnershipHandoverRequested} event.
log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
}
}
}
/// @dev Cancels the two-step ownership handover to the caller, if any.
function cancelOwnershipHandover() public payable virtual {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), 0)
// Emit the {OwnershipHandoverCanceled} event.
log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
}
}
/// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
/// Reverts if there is no existing ownership handover requested by `pendingOwner`.
function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
let handoverSlot := keccak256(0x0c, 0x20)
// If the handover does not exist, or has expired.
if gt(timestamp(), sload(handoverSlot)) {
mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
revert(0x1c, 0x04)
}
// Set the handover slot to 0.
sstore(handoverSlot, 0)
}
_setOwner(pendingOwner);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC READ FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of the contract.
function owner() public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := sload(_OWNER_SLOT)
}
}
/// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
function ownershipHandoverExpiresAt(address pendingOwner)
public
view
virtual
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
// Compute the handover slot.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
// Load the handover slot.
result := sload(keccak256(0x0c, 0x20))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MODIFIERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Marks a function as only callable by the owner.
modifier onlyOwner() virtual {
_checkOwner();
_;
}
}